• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011002 (2021)
Lingdong Kong1、2、†, Qingyuan Zhao1、2、*†, Xuecou Tu1、2, Labao Zhang1、2, Xiaoqing Jia1、2, Lin Kang1、2, Jian Chen1、2, and Peiheng Wu1、2
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
  • 2Research Institute of Superconductor Electronics, Nanjing University, Nanjing, Jiangsu 210023, China
  • show less
    DOI: 10.3788/LOP202158.1011002 Cite this Article Set citation alerts
    Lingdong Kong, Qingyuan Zhao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Peiheng Wu. Progress and Applications of Superconducting Nanowire Delay-Line Single-Photon Imagers[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011002 Copy Citation Text show less
    References

    [1] Li Z P, Huang X, Cao Y et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 8, 1532-1540(2020). http://www.cnki.com.cn/Article/CJFDTotal-GZXJ202009021.htm

    [2] Pawlikowska A M, Halimi A, Lamb R A et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 25, 11919-11931(2017). http://europepmc.org/abstract/MED/28788749

    [3] Yu J, Zhang R L, Gao Y F et al. Intravital confocal fluorescence lifetime imaging microscopy in the second near-infrared window[J]. Optics Letters, 45, 3305-3308(2020). http://www.researchgate.net/publication/341340624_Intravital_confocal_fluorescence_lifetime_imaging_microscopy_in_the_second_near-infrared_window

    [4] Xue L, Li Z L, Zhang L B et al. Satellite laser ranging using superconducting nanowire single-photon detectors at 1064 nm wavelength[J]. Optics Letters, 41, 3848-3851(2016). http://www.ncbi.nlm.nih.gov/pubmed/27519105

    [5] Altmann Y, McLaughlin S, Padgett M J et al. Quantum-inspired computational imaging[J]. Science, 361, 2298(2018).

    [6] Kirmani A, Venkatraman D, Shin D et al. First-photon imaging[J]. Science, 343, 58-61(2014).

    [7] Shin D, Xu F, Venkatraman D et al. Photon-efficient imaging with a single-photon camera[J]. Nature Communications, 7, 12046(2016). http://www.ncbi.nlm.nih.gov/pubmed/27338821/

    [8] O'Toole M, Lindell D B, Wetzstein G. Confocal non-line-of-sight imaging based on the light-cone transform[J]. Nature, 555, 338-341(2018).

    [9] Lyons A, Tonolini F, Boccolini A et al. Computational time-of-flight diffuse optical tomography[J]. Nature Photonics, 13, 575-579(2019). http://www.researchgate.net/publication/333227805_Computational_time-of-flight_diffuse_optical_tomography

    [10] Shin D, Kirmani A, Goyal V K et al. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors[J]. IEEE Transactions on Computational Imaging, 1, 112-125(2015). http://arxiv.org/abs/1406.1761v1

    [11] Villa F, Lussana R, Bronzi D et al. CMOS imager with 1024 SPADs and TDCs for single-photon timing and 3-D time-of-flight[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 364-373(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6862847

    [12] Natarajan C M, Tanner M G, Hadfield R H. Superconducting nanowire single-photon detectors: physics and applications[J]. Superconductor Science and Technology, 25, 063001(2012). http://arxiv.org/abs/1204.5560v1

    [13] McCarthy A, Krichel N J, Gemmell N R et al. Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection[J]. Optics Express, 21, 8904-8915(2013). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-21-7-8904

    [14] Zhou H, He Y H, You L X et al. Few-photon imaging at 1550 nm using a low-timing-jitter superconducting nanowire single-photon detector[J]. Optics Express, 23, 14603-14611(2015).

    [15] Gerrits T, Lum D J, Verma V et al. Short-wave infrared compressive imaging of single photons[J]. Optics Express, 26, 15519-15527(2018). http://www.researchgate.net/publication/325612850_Short-wave_infrared_compressive_imaging_of_single_photons

    [16] Miki S, Yamashita T, Wang Z et al. A 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection[J]. Optics Express, 22, 7811-7820(2014).

    [17] Miyajima S, Yabuno M, Miki S et al. High-time-resolved 64-channel single-flux quantum-based address encoder integrated with a multi-pixel superconducting nanowire single-photon detector[J]. Optics Express, 26, 29045-29054(2018). http://www.researchgate.net/publication/328508639_High-time-resolved_64-channel_single-flux_quantum-based_address_encoder_integrated_with_a_multi-pixel_superconducting_nanowire_single-photon_detector

    [18] Wollman E E, Verma V B, Lita A E et al. Kilopixel array of superconducting nanowire single-photon detectors[J]. Optics Express, 27, 35279-35289(2019).

    [19] Zheng K, Zhao Q Y, Lu H Y B et al. A superconducting binary encoder with multigate nanowire cryotrons[J]. Nano Letters, 20, 3553-3559(2020). http://pubs.acs.org/doi/10.1021/acs.nanolett.0c00498

    [20] Zhao Q Y, Zhu D, Calandri N et al. Single-photon imager based on a superconducting nanowire delay line[J]. Nature Photonics, 11, 247-251(2017). http://www.nature.com/nphoton/journal/v11/n4/abs/nphoton.2017.35.html

    [21] Kong L D, Zhao Q Y, Zheng K et al. Noise-tolerant single-photon imaging with a superconducting nanowire camera[J]. Optics Letters, 45, 6732-6735(2020). http://www.researchgate.net/publication/346692020_Noise-tolerant_single-photon_imaging_with_a_superconducting_nanowire_camera

    [22] Cheng R S, Zou C L, Guo X et al. Broadband on-chip single-photon spectrometer[J]. Nature Communications, 10, 1-7(2019).

    [23] Rapp J, Goyal V K. A few photons among many: unmixing signal and noise for photon-efficient active imaging[J]. IEEE Transactions on Computational Imaging, 3, 445-459(2017). http://ieeexplore.ieee.org/document/7932527/

    [24] Lindell D B, O'Toole M, Wetzstein G. Single-photon 3D imaging with deep sensor fusion[J]. ACM Transactions on Graphics, 37, 113(2018).

    [25] Dabov K, Foi A, Katkovnik V et al. Image denoising by sparse 3-D transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 16, 2080-2095(2007). http://ieeexplore.ieee.org/document/4271520/references

    [26] Liu L K, Chan S H, Nguyen T Q. Depth reconstruction from sparse samples: representation, algorithm, and sampling[J]. IEEE Transactions on Image Processing, 24, 1983-1996(2015).

    [27] Korzh B, Zhao Q Y, Allmaras J P et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 14, 250-255(2020). http://www.nature.com/articles/s41566-020-0589-x

    [28] Zhu D, Zhao Q Y, Choi H et al. A scalable multi-photon coincidence detector based on superconducting nanowires[J]. Nature Nanotechnology, 13, 596-601(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=c1c7ed06f4603711bedb23ca94e78d13

    Lingdong Kong, Qingyuan Zhao, Xuecou Tu, Labao Zhang, Xiaoqing Jia, Lin Kang, Jian Chen, Peiheng Wu. Progress and Applications of Superconducting Nanowire Delay-Line Single-Photon Imagers[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011002
    Download Citation