• Optoelectronic Technology
  • Vol. 43, Issue 2, 91 (2023)
Jia ZHOU, Jinjian YAN, Zhiqiang LIU, Ying JIANG, Yang HUANG Kai BAO, Jinchai LI, and Deyun ZHOU
Author Affiliations
  • School of Microelectronics, Northwestern Polytechnical University, Xi'an 7092, CHN
  • show less
    DOI: 10.19453/j.cnki.1005-488x.2023.02.001 Cite this Article
    Jia ZHOU, Jinjian YAN, Zhiqiang LIU, Ying JIANG, Yang HUANG Kai BAO, Jinchai LI, Deyun ZHOU. The Current Bottleneck and Technical Progress of Micro LED[J]. Optoelectronic Technology, 2023, 43(2): 91 Copy Citation Text show less
    References

    [1] Schadt M. Milestone in the history of field-effect liquid crystal displays and materials[J]. Japanese Journal of Applied Physics, 03B001(2009).

    [2] Jin S X, Li J, Li J Z et al. GaN microdisk light emitting diodes[J]. Applied Physics Letters, 76, 631-633(2000).

    [5] Jiang H X, Jin S X, Li J et al. III-nitride blue microdisplays[J]. Applied Physics Letters, 78, 1303-1305(2001).

    [6] Chen Z, Yan S, Danesh C. Micro LED technologies and applications: Characteristics, fabrication, progress, and challenges[J]. Journal of Physics D: Applied Physics, 54, 123001(2021).

    [7] Parbrook P J, Corbett B, Han J et al. Micro-light emitting diode: From chips to applications[J]. Laser & Photonics Reviews, 15, 2000133(2021).

    [8] Lin J Y, Jiang H X. Development of microLED[J]. Applied Physics Letters, 116, 100502(2020).

    [9] Huang Y, Hsiang E L, Deng M Y et al. Mini-LED, Micro LED and OLED displays: present status and future perspectives[J]. Light: Science & Applications, 9, 1-16(2020).

    [10] Lee V W, Twu N, Kymissis I. Micro‐LED Technologies and Applications[J]. Information Display, 32, 16-23(2016).

    [11] Lee H E, Shin J H, Park J H et al. Micro light‐emitting diodes for display and flexible biomedical applications[J]. Advanced Functional Materials, 29, 1808075(2019).

    [12] Wu T, Sher C W, Lin Y et al. Mini-LED and Micro-LED: promising candidates for the next generation display technology[J]. Applied Sciences, 8, 1557(2018).

    [13] Miao W C, Hsiao F H, Sheng Y et al. Microdisplays: Mini-LED, Micro-OLED, and Micro LED[J]. Advanced Optical Materials, 2300112(2023).

    [14] Huang Y, Tan G, Gou F et al. Prospects and challenges of mini-LED and micro-LED displays[J]. Journal of the Society for Information Display, 27, 387-401(2019).

    [15] Behrman K, Kymissis I. Micro light-emitting diodes[J]. Nature Electronics, 5, 564-573(2022).

    [17] Lu S, Li J, Huang K et al. Designs of InGaN Micro LED structure for improving quantum efficiency at low current density[J]. Nanoscale Research Letters, 16, 99(2021).

    [18] Chang L, Yeh Y W, Hang S et al. Alternative strategy to reduce surface recombination for InGaN/GaN Micro-light-Emitting diodes—Thinning the quantum barriers to manage the current spreading[J]. Nanoscale Research Letters, 15, 160(2020).

    [19] Shim J I, Shin D S. Measuring the internal quantum efficiency of light-emitting diodes: Towards accurate and reliable room-temperature characterization[J]. Nanophotonics, 7, 1601-1615(2018).

    [20] Kuritzky L Y, Weisbuch C, Speck J S. Prospects for 100% wall-plug efficient III-nitride LEDs[J]. Optics Express, 26, 16600-16608(2018).

    [21] Bulashevich K A, Konoplev S S, Karpov S Y. Effect of die shape and size on performance of III-Nitride Micro LEDs: A modeling study[J]. Photonics, 5, 41(2018).

    [22] Yan G, Hyun B R, Jiang F et al. Exploring superlattice DBR effect on a micro-LED as an electron blocking layer[J]. Optics Express, 29, 26255-26264(2021).

    [23] Kou J, Shen C C, Shao H et al. Impact of the surface recombination on InGaN/GaN-based blue micro-light emitting diodes[J]. Optics Express, 27(2019).

    [25] Qiu R, Lu H, Chen D et al. Optimization of inductively coupled plasma deep etching of GaN and etching damage analysis[J]. Applied Surface Science, 257, 2700-2706(2011).

    [26] Kato M, Mikamo K, Ichimura M et al. Characterization of plasma etching damage on p-type GaN using Schottky diodes[J]. Journal of Applied Physics, 103(2008).

    [27] Hwang D, Mughal A, Pynn C D et al. Sustained high external quantum efficiency in ultrasmall blue III–nitride Micro-LEDs[J]. Applied Physics Express, 10(2017).

    [28] Yang F, Xu Y, Li L et al. Optical and microstructural characterization of Micro LED with sidewall treatment[J]. Journal of Physics D: Applied Physics, 55, 435103(2022).

    [29] Wong M S, Lee C, Myers D J et al. Size-independent peak efficiency of III-nitride micro-light-emitting-diodes using chemical treatment and sidewall passivation[J]. Applied Physics Express, 12(2019).

    [30] Park J H, Pristovsek M, Cai W et al. Interplay of sidewall damage and light extraction efficiency of micro-LEDs[J]. Optics Letters, 47, 2250-2253(2022).

    [31] Yang Y, Cao X A. Removing plasma-induced sidewall damage in GaN-based light-emitting diodes by annealing and wet chemical treatments[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, 27, 2337-2341(2009).

    [32] Choi W H, You G, Abraham M et al. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes[J]. Journal of Applied Physics, 116(2014).

    [33] Chen D, Wang Z, Hu F C et al. Improved electro-optical and photoelectric performance of GaN-based micro-LEDs with an atomic layer deposited AlN passivation layer[J]. Optics Express, 29, 36559(2021).

    [35] Lee T Y, Huang Y M, Huang Y M et al. Increase in the efficiency of III-nitride micro LEDs by atomic layer deposition[J]. Optics Express, 30, 18552-18561(2022).

    [36] Huang H H, Huang S K, Tsai Y L et al. Investigation on reliability of red micro-light emitting diodes with atomic layer deposition passivation layers[J]. Optics Express, 28, 38184-38195(2020).

    [37] Sheen M, Ko Y, Kim D et al. Highly efficient blue InGaN nanoscale light-emitting diodes[J]. Nature, 608, 56-61(2022).

    [38] Zhu Z, Tao T, Liu B et al. Improved optical and electrical characteristics of GaN-Based Micro LEDs by optimized Sidewall Passivation[J]. Micromachines, 14, 10(2023).

    [39] Wong M S, Kearns J A, Lee C et al. Improved performance of AlGaInP red micro-light-emitting diodes with sidewall treatments[J]. Optics Express, 28, 5787(2020).

    [40] Yu J, Tao T, Liu B et al. Investigations of sidewall passivation technology on the optical performance for smaller size GaN-Based Micro LEDs[J]. Crystals, 11, 403(2021).

    [41] Bai J, Cai Y, Feng P et al. Ultrasmall, ultracompact and ultrahigh efficient ingan micro light emitting diodes (μLEDs) with narrow spectral line width[J]. ACS Nano, 14, 6906-6911(2020).

    [42] Feng P, Xu C, Bai J et al. A simple approach to achieving ultrasmall III-Nitride microlight-emitting diodes with red emission[J]. ACS Applied Electronic Materials, 4, 2787-2792(2022).

    [43] Park J, Choi J H, Kong K et al. Electrically driven mid-submicrometre pixelation of InGaN micro-light-emitting diode displays for augmented-reality glasses[J]. Nature Photonics, 15, 449-455(2021).

    [44] Zhuang Z, Iida D, Velazquez-Rizo M et al. Ultra-small InGaN green micro-light-emitting diodes fabricated by selective passivation of p-GaN[J]. Optics Letters, 46, 5092-5095(2021).

    [45] Zhuang Z, Iida D, Ohkawa K. Ultrasmall and ultradense InGaN-based RGB monochromatic micro-light-emitting diode arrays by pixilation of conductive p-GaN[J]. Photonics Research, 9, 2429-2434(2021).

    [46] Huang S C, Li H, Zhang Z H et al. Superior characteristics of microscale light emitting diodes through tightly lateral oxide-confined scheme[J]. Applied Physics Letters, 110(2017).

    [47] Hang S, Zhang M, Zhang Y et al. Artificially formed resistive ITO/p-GaN junction to suppress the current spreading and decrease the surface recombination for GaN-based micro-light emitting diodes[J]. Optics Express, 29, 31201(2021).

    [48] Liu Z J, Chong W C, Wong K M et al. A novel BLU-free full-color LED projector using LED on silicon micro-displays[J]. IEEE Photonics Technology Letters, 25, 2267-2270(2013).

    [49] Chong W C, Wong K M, Liu Z J et al. A novel full-color 3LED projection system using R-G-B light emitting diodes on silicon (LEDoS) micro-displays[C], 838-841(2013).

    [50] KGOnTech. News: Wave Optics & Jade Bird Display Micro LED Partnership[J].

    [51] Chen K J, Chen H C, Tsai K A et al. Resonant-enhanced full-color emission of quantum-dot-based display technology using a pulsed spray method[J]. Advanced Functional Materials, 22, 5138-5143(2012).

    [52] Anwar A R, Sajjad M T, Johar M A et al. Recent progress in Micro LED-based display technologies[J]. Laser & Photonics Reviews, 16, 2100427(2022).

    [53] Ma T, Chen J, Chen Z et al. Progress in color conversion technology for Micro LED[J]. Advanced Materials Technologies, 8, 2200632(2023).

    [54] Zhu G, Liu Y, Ming R et al. Mass transfer, detection and repair technologies in micro-LED displays[J]. Science China Materials, 65, 2128-2153(2022).

    [56] Wu Y, Ma J, Su P et al. Full-color realization of Micro LED displays[J]. Nanomaterials, 10, 2482(2020).

    [57] Ryu J E, Park S, Park Y et al. Technological breakthroughs in chip fabrication, transfer, and color conversion for high-performance Micro LED displays[J]. Advanced Materials, 2204947(2023).

    [58] Zhou X, Tian P, Sher C W et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display[J]. Progress in Quantum Electronics, 71, 100263(2020).

    [59] Bibl A, Higginson J A, Law H fai S et al. Method of transferring a micro device[P].

    [60] Micro device with stabilization post[P]. US.

    [61] Wu M H, Fang Y H, Chao C H. Electric-programmable magnetic module and picking-up and placement process for electronic devices[P].

    [62] Pan K, Sun J, Lin C et al. Highly effective transfer of micro-LED pixels to the intermediate and rigid substrate with weak and tunable adhesion by thiol modification[J]. Nanoscale, 15, 4420-4428(2023).

    [63] Park S I, Xiong Y, Kim R H et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays[J]. Science, 325, 977-981(2009).

    [64] Meitl M, Radauscher E, Bonafede S et al. 55-1: Invited paper: Passive matrix displays with transfer-printed microscale inorganic LEDs[J]. SID Symposium Digest of Technical Papers, 47, 743-746(2016).

    [65] Meitl M A, Zhu Z T, Kumar V et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp[J]. Nature Materials, 5, 33-38(2006).

    [66] Bohandy J, Kim B F, Adrian F J. Metal deposition from a supported metal film using an excimer laser[J]. Journal of Applied Physics, 60, 1538-1539(1986).

    [67] Miller R, Marinov V, Swenson O et al. Noncontact selective laser-assisted placement of thinned semiconductor dice[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 971-978(2012).

    [68] Marinov V, Swenson O, Miller R et al. Laser-enabled advanced packaging of ultrathin bare dice in flexible substrates[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2, 569-577(2012).

    [69] Saeedi E, Kim S, Parviz B A. Self-assembled crystalline semiconductor optoelectronics on glass and plastic[J]. Journal of Micromechanics and Microengineering, 18(2008).

    [70] Choi M, Jang B, Lee W et al. Stretchable active matrix inorganic light-emitting diode display enabled by overlay-aligned roll-transfer printing[J]. Advanced Functional Materials, 27, 1606005(2017).

    [71] Tavares L, Kjelstrup-Hansen J, Rubahn H G. Efficient roll-on transfer technique for well-aligned organic nanofibers[J]. Small, 7, 2460-2463(2011).

    [73] Chang W, Kim J, Kim M et al. Concurrent self-assembly of RGB microLEDs for next-generation displays[J]. Nature, 617, 287-291(2023).

    [74] Gou F, Hsiang E L, Tan G et al. Angular color shift of micro-LED displays[J]. Optics Express, 27, A746-A757(2019).

    [75] Li P, Li H, Zhang H et al. Size-independent peak external quantum efficiency (>2%) of InGaN red micro-light-emitting diodes with an emission wavelength over 600 nm[J]. Applied Physics Letters, 119(2021).

    [77] Zhuang Z, Iida D, Ohkawa K. InGaN-based red light-emitting diodes: from traditional to micro-LEDs[J]. Japanese Journal of Applied Physics, 61, SA0809(2021).

    [78] Zhang S, Zhang J, Gao J et al. Efficient emission of InGaN-based light-emitting diodes: Toward orange and red[J]. Photonics Research, 8, 11001671(2020).

    [79] Even A, Laval G, Ledoux O et al. Enhanced In incorporation in full InGaN heterostructure grown on relaxed InGaN pseudo-substrate[J]. Applied Physics Letters, 110, 262103(2017).

    [81] Pasayat S S, Gupta C, Wong M S et al. Demonstration of ultra-small (<10 μm) 632 nm red InGaN micro-LEDs with useful on-wafer external quantum efficiency (>0.2%) for mini-displays[J]. Applied Physics Express, 14(2020).

    [82] Pasayat S S, Gupta C, Wong M S et al. Growth of strain-relaxed InGaN on micrometer-sized patterned compliant GaN pseudo-substrates[J]. Applied Physics Letters, 116, 111101(2020).

    [83] Han H V, Lin H Y, Lin C C et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology[J]. Optics Express, 23, 32504(2015).

    [84] Li L, Tang G, Shi Z et al. Transfer-printed, tandem microscale light-emitting diodes for full-color displays[J]. Proceedings of the National Academy of Sciences, 118(2021).

    [85] Shin J, Kim H, Sundaram S et al. Vertical full-colour micro-LEDs via 2D materials-based layer transfer[J]. Nature, 614, 81-87(2023).

    [86] Chen D, Chen Y C, Zeng G et al. Integration technology of Micro LED for next-generation display[J]. Research, 6(2023).

    [87] Yang J, Park H, Kim B et al. Active-matrix micro-light-emitting diode displays driven by monolithically integrated dual-gate oxide thin-film transistors[J]. Journal of Materials Chemistry C, 10, 9699-9706(2022).

    [88] Um J G, Jeong D Y, Jung Y et al. Active-matrix gan µ-led display using oxide thin-film transistor backplane and flip chip led bonding[J]. Advanced Electronic Materials, 5, 1800617(2019).

    [89] Jin T, Kim S, Han J H et al. Demonstration of programmable light intensity of a micro-LED with a Hf-based ferroelectric ITZO TFT for Mura-free displays[J]. Nanoscale Advances, 5, 1316-1322(2023).

    [90] Guo W, Tai J, Liu J et al. Process optimization of passive matrix GaN-Based Micro LED arrays for display applications[J]. Journal of Electronic Materials, 48, 5195-5201(2019).

    [91] Liou J C, Lin W D. Micro-device array LED processes on CMOS/MEMS substrate[J]. 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), 776-779(2017).

    [92] McKendry J J D, Massoubre D, Zhang S et al. Visible-light communications using a CMOS-controlled Micro-light- emitting-Diode array[J]. Journal of Lightwave Technology, 30, 61-67(2012).

    [93] Zhang X, Yin L, Ren K et al. Research on simulation design of MOS driver for Micro LED[J]. Electronics, 11, 2044(2022).

    [94] Zhang S, McKendry J J D, Gong Z et al. Directly color-tunable smart display based on a CMOS-controlled micro-LED array[J]. IEEE Photonics Conference 2012, 435-436(2012).

    [95] Li P, Zhang X, Chong W C et al. Monolithic thin film red LED active-matrix micro-display by flip-chip technology[J]. IEEE Photonics Technology Letters, 33, 603-606(2021).

    [96] Zhang X, Qi L, Chong W C et al. Active matrix monolithic micro-LED full-color micro-display[J]. Journal of the Society for Information Display, 29, 47-56(2021).

    [97] Meng W, Xu F, Yu Z et al. Three-dimensional monolithic micro-LED display driven by atomically thin transistor matrix[J]. Nature Nanotechnology, 16, 1231-1236(2021).

    [98] Zhang K, Han T, Cho W K et al. Investigation of enhanced ambient contrast ratio in novel Micro/Mini-LED displays[J]. Nanomaterials, 11, 3304(2021).

    [99] Chang K P, Chien Y W, Wang P H et al. Characteristics of high-power impulse magnetron sputtering ITO/Ag/ITO films for application in transparent Micro LED displays[J]. ACS Applied Electronic Materials, 5, 905-912(2023).

    [100] Peng D, Zhang K, Chao V S D et al. Full-color pixelated-addressable light emitting diode on transparent substrate (LEDoTS) Micro-Displays by CoB[J]. Journal of Display Technology, 12, 742-746(2016).

    [101] Sun Y, Fan J, Liu M et al. Highly transparent, ultra-thin flexible, full-color mini-LED display with indium–gallium–zinc oxide thin-film transistor substrate[J]. Journal of the Society for Information Display, 28, 926-935(2020).

    [102] Yu J, Xu F, Tao T et al. Gallium Nitride blue/green Micro LEDs for high brightness and transparency display[J]. IEEE Electron Device Letters, 44, 281-284(2023).

    [103] Hartensveld M, Zhang J. Monolithic integration of gan nanowire light-emitting diode with field effect transistor[J]. IEEE Electron Device Letters, 40, 427-430(2019).

    [104] Pandey A, Malhotra Y, Wang P et al. N-polar InGaN/GaN nanowires: Overcoming the efficiency cliff of red-emitting micro-LEDs[J]. Photonics Research, 10, 1107(2022).

    [105] Lu W, Nakayama N, Ito K et al. Morphology control and crystalline quality of p-Type GaN shells grown on coaxial GaInN/GaN multiple quantum shell nanowires[J]. ACS Applied Materials & Interfaces, 13, 54486-54496(2021).

    [106] Zhuang Z, Guo X, Zhang G et al. Large-scale fabrication and luminescence properties of GaN nanostructures by a soft UV-curing nanoimprint lithography[J]. Nanotechnology, 24, 405303(2013).

    [107] Zhuang Z, Guo X, Liu B et al. Great enhancement in the excitonic recombination and light extraction of highly ordered InGaN/GaN elliptic nanorod arrays on a wafer scale[J]. NanoTechnology, 27(2015).

    [108] Zhuang Z, Guo X, Liu B et al. High color rendering index hybrid III-Nitride/nanocrystals white light-emitting diodes[J]. Advanced Functional Materials, 26, 36-43(2016).

    [109] Bi Z, Lenrick F, Colvin J et al. InGaN platelets: Synthesis and applications toward green and red light-emitting diodes[J]. Nano Letters, 19, 2832-2839(2019).

    [110] Bi Z, Lu T, Colvin J et al. Realization of ultrahigh quality InGaN platelets to be used as relaxed templates for red Micro LEDs[J]. ACS Applied Materials & Interfaces, 12, 17845-17851(2020).

    Jia ZHOU, Jinjian YAN, Zhiqiang LIU, Ying JIANG, Yang HUANG Kai BAO, Jinchai LI, Deyun ZHOU. The Current Bottleneck and Technical Progress of Micro LED[J]. Optoelectronic Technology, 2023, 43(2): 91
    Download Citation