[1] A K Geim, K S Novoselov. The rise of graphene. Nat Mater, 6, 183(2007).
[2] M Gupta, N Gaur, P Kumar et al. Tailoring the electronic properties of a Z-shaped graphene field effect transistor via B/N doping. Phys Lett A, 379, 710(2015).
[3] K S Novoselov, A K Geim, S Morozov. Electric field effect in atomically thin carbon films. Science, 306, 666(2004).
[4] X R Wang, Y J Ouyang, X L Li et al. Room-temperature all semiconducting sub-10-nm Graphene nanoribbon field-effect transistors. Phys Rev Lett, 100, 206803(2008).
[5] G Giovannetti, P A Khomyakov, G Brocks et al. Substrate induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations. Phys Rev B, 76, 073103(2007).
[6] Z M Ao, F M Peeters. electric field activated hydrogen dissociative adsorption to nitrogen-doped graphene. J Phys Chem C, 114, 14503(2010).
[7] J Zhou, M M Wu, X Zhou et al. Tuning electronic and magnetic properties of Graphene by surface modification. Appl Phys Lett, 95, 103108(2009).
[8] S M Choi, S H Jhi, Y W Son. Effects of strain on electronic properties of graphene. Phys Rev B, 81, 081407(2010).
[9] Y Zhang, T T Tang, C Girit et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature, 459, 820(2009).
[10] W Tao, G Qing, L Yan et al. A comparative investigation of an AB- and AA-stacked bilayer graphene sheet under an applied electric field: A density functional theory study. Chin Phys B, 21, 067301(2012).
[11] A A Avetisyan, B Partoens, F M Peeters. Stacking order dependent electric field tuning of the band gap in graphene multilayers. Phys Rev B, 81, 115432(2010).
[12] J Zhu, P Xiao, H Li et al. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl Mater Interf, 6, 16449(2014).
[13] X R Li, Y Dai, Y D Ma et al. Graphene/g-C3N4 bilayer: considerable band gap opening and effective band structure engineering. Phys Chem Chem Phys, 16, 4230(2014).
[14] M M Dong, C He, W X Zhang et al. Tunable and sizable bandgap of g-C3N4/Graphene/g-C3N4 sandwich heterostructure: a Van Der Waals density functional study. J Mater Chem C, 5, 3830(2017).
[15] W Hu, Z Y Li, J L Yang. Structural, electronic, and optical properties of hybrid silicene and graphene nanocomposite. J Chem Phys, 139, 154704(2013).
[16]
[17] S Smidstrup, D Stradi, J Wellendorff et al. First-principles Green's-function method for surface calculations: A pseudopotential localized basis set approach. Phys Rev B, 96, 195309(2017).
[18] M Schlipf, F Gygi. Optimization algorithm for the generation of ONCV pseudopotentials. Comp Phys Commun, 196, 36(2015).
[19] M J Van Setten, M Giantomassi, E Bousquet et al. The PseudoDojo: Training and grading a 85 element optimized norm-conserving pseudopotential table. Comp Phys Comm, 226, 39(2018).
[20] K Stokbro, D E Petersen, S Smidstrup et al. Semiempirical model for nanoscale device simulations. Phys Rev B, 82, 075420(2010).
[21] P Pulay. Convergence acceleration of iterative sequences, The case of SCF iteration. Chem Phys Lett, 73, 393(1980).
[22] J Wang, F Ma, M Sun. Graphene, hexagonal boron nitride, and their heterostructures: properties and applications. RSC Adv, 7, 16801(2017).
[23] R K Ghosh, S Mahapatra. Proposal for graphene-boron nitride heterobilayer based tunnel FET. IEEE Trans Nanotechnol, 12, 665(2013).
[24] A Ramasubramaniam, D Naveh, E Towe. Tunable band gaps in bilayer graphene/h-BN heterostructures. Nano Lett, 11, 1070(2011).