• Journal of Semiconductors
  • Vol. 40, Issue 3, 032801 (2019)
Santosh Kumar Gupta1 and Rupesh Shukla2
Author Affiliations
  • 1Department of Electronics & Communication Engineering, Motilal Nehru National Institute of Technology Allahabad, Uttar Pradesh-211004, India
  • 2Department of Electrical & Electronics Engineering, Loknayak Jai Prakash Institute of Technology Chhapra, Bihar-841302, India
  • show less
    DOI: 10.1088/1674-4926/40/3/032801 Cite this Article
    Santosh Kumar Gupta, Rupesh Shukla. Bandgap engineered novel g-C3N4/G/h-BN heterostructure for electronic applications[J]. Journal of Semiconductors, 2019, 40(3): 032801 Copy Citation Text show less
    (Color online) Proposed heterostructures (a) G/g-C3N4/h-BN in ABA stack and (b) g-C3N4/G/h-BN in AAA stack.
    Fig. 1. (Color online) Proposed heterostructures (a) G/g-C3N4/h-BN in ABA stack and (b) g-C3N4/G/h-BN in AAA stack.
    (Color online) Band structure of BLG in Bernal (AB) stack at (a) 0 and (b) 4 V/nm.
    Fig. 2. (Color online) Band structure of BLG in Bernal (AB) stack at (a) 0 and (b) 4 V/nm.
    (Color online) Bandgap in Bernal stack w.r.t. (a) Electric field (E) keeping interlayer distance d1 = d2 = 2.8 Å and (b) interlayer distance (keeping d1 = d2) and E = 6 V/nm.
    Fig. 3. (Color online) Bandgap in Bernal stack w.r.t. (a) Electric field (E) keeping interlayer distance d1 = d2 = 2.8 Å and (b) interlayer distance (keeping d1 = d2) and E = 6 V/nm.
    (Color online) Bandgap in hexagonal stack w.r.t. (a) Electric field (E) keeping interlayer distance d1 = d2 = 2.8 Å and (b) interlayer distance (keeping d1 = d2) and E = 6 V/nm.
    Fig. 4. (Color online) Bandgap in hexagonal stack w.r.t. (a) Electric field (E) keeping interlayer distance d1 = d2 = 2.8 Å and (b) interlayer distance (keeping d1 = d2) and E = 6 V/nm.
    (Color online) Binding energies for (1) GBL -AB stack, (2) GBL-AA, (3) G/BN-AB, (4) G/BN-AA, (5) G/C3N4-AB, (6) G/C3N4-AA, (7) BN/G/BN-AB, (8) BN/G/BN-AA, (9) C3N4/G/C3N4-ABA, (10) C3N4/G/C3N4-AAA, (11) G/C3N4/BN- ABA, and (12) C3N4/G/BN-AAA.
    Fig. 5. (Color online) Binding energies for (1) GBL -AB stack, (2) GBL-AA, (3) G/BN-AB, (4) G/BN-AA, (5) G/C3N4-AB, (6) G/C3N4-AA, (7) BN/G/BN-AB, (8) BN/G/BN-AA, (9) C3N4/G/C3N4-ABA, (10) C3N4/G/C3N4-AAA, (11) G/C3N4/BN- ABA, and (12) C3N4/G/BN-AAA.
    Graphene structureInter atomic distance (Å)
    at 0 V/nmat 6 V/nm
    d1d2d1d2
    BLG[9]3.1573.138
    G/BN[23]3.1293.122
    G/C3N4[13]3.1083.056
    BN/G/BN[24]3.2653.2653.2923.258
    C3N4/G/C3N4[14]3.1073.1103.1323.119
    G/C3N4/BN 3.2393.1263.1733.100
    Table 1. Interlayer distance in Bernal stack.
    Graphene structureInter atomic distance (Å)
    at 0 V/nmat 6 V/nm
    d1d2d1d2
    BLG[9]3.3673.282
    G/BN[23]3.3203.279
    G/C3N4[13]3.1083.056
    BN/G/BN[24]3.2973.2953.2923.258
    C3N4/G/C3N4[14]3.03.03.0942.982
    C3N4/G/BN 3.2943.0043.2953.05
    Table 2. Interlayer distance in hexagonal stack.
    Graphene structureBinding energies (Eb)
    BLG
    G/BN
    G/C3N4
    BN/G/BN
    C3N4/G/C3N4
    G/C3N4/BN
    C3N4/G/BN
    Table 3. Binding energies (Eb) for different heterostructures.
    Graphene structureBernal stackHexagonal stack
    ElectronHoleElectronHole
    BLG0.3000.3350.4360.527
    G/BN0.3150.3660.2940.372
    G/C3N40.2860.3240.2680.349
    BN/G/BN0.3160.4710.3600.390
    C3N4/G/C3N40.3350.3470.3450.371
    G/C3N4/BN 0.3540.415
    C3N4/G/BN 0.2740.346
    Table 4. Effective mass at 6 V/nm field with interlayer distance (both d1 and d2) fixed at 2.8 Å.