• Laser & Optoelectronics Progress
  • Vol. 56, Issue 8, 081901 (2019)
Suling Sang*
Author Affiliations
  • Engineering Research Center of Nanostructure and Functional Materials, College of Physics and Electronic Information Engineering, Ningxia Normal University, Guyuan, Ningxia 756000, China
  • show less
    DOI: 10.3788/LOP56.081901 Cite this Article Set citation alerts
    Suling Sang. Coherent Control of Multi-Dressed Four-Wave Mixing Autler-Townes Splitting[J]. Laser & Optoelectronics Progress, 2019, 56(8): 081901 Copy Citation Text show less
    References

    [1] Harris S E. Electromagnetically induced transparency[J]. Physics Today, 50, 36-42(1997).

    [2] Gea-Banacloche J, Li Y Q, Jin S Z et al. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment[J]. Physical Review A, 51, 576-583(1995).

    [3] Imamoglu A, Harris S E. Lasers without inversion: interference of dressed lifetime-broadened states[J]. Optics Letters, 14, 1344-1346(1989).

    [4] Hau L V, Harris S E, Dutton Z et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 397, 594-598(1999).

    [5] Liu C E, Dutton Z, Behroozi C H et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 409, 490-493(2001).

    [6] Li G S, Yan F P, Wang W et al. Analysis of photosensitive tunable multiband electromagnetically induce transparency in metamaterials[J]. Chinese Journal of Lasers, 46, 0114002(2019).

    [7] Duan L M, Lukin M D, Cirac J I et al. Long-distance quantum communication with atomic ensembles and linear optics[J]. Nature, 414, 413-418(2001).

    [8] Liu Y T, Niu Y P, Lin G W et al. Enhancement of fifth-order nonlinearity induced by atomic coherence[J]. Acta Optica Sinica, 37, 0719002(2017).

    [9] Lukin M D, Matsko A B, Fleischhauer M et al. Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence[J]. Physical Review Letters, 82, 1847(1999).

    [10] Li X, Li P Y. Controlling the transition of bright and dark states via dressing effect and phase of the coupling field[J]. Laser & Optoelectronics Progress, 52, 051901(2015).

    [11] Zhang H, Wang L M, Chen J et al. Autler-Townes splitting of a cascade system in ultracold cesium Rydberg atoms[J]. Physical Review A, 87, 033835(2013).

    [12] Zhang Y P, Li P Y, Zheng H B et al. Observation of Autler-Townes splitting in six-wave mixing[J]. Optics Express, 19, 7769-7777(2011).

    [13] Xu X, Sun B, Berman P R et al. Coherent optical spectroscopy of a strongly driven quantum dot[J]. Science, 317, 929-932(2007).

    [14] Cho S U, Moon H S, Chough Y T et al. Quantum coherence and population transfer in a driven cascade three-level artificial atom[J]. Physical Review A, 89, 053814(2014).

    [15] Baur M, Filipp S, Bianchetti R et al. Measurement of Autler-Townes and Mollow transitions in a strongly driven superconducting qubit[J]. Physical Review Letters, 102, 243602(2009).

    [16] Ahmed E, Hansson A, Qi P et al. Measurement of the electronic transition dipole moment by Autler-Townes splitting: Comparison of three- and four-level excitation schemes for the Na2A1∑u+-X1∑g+ system [J]. The Journal of Chemical Physics, 124, 084308(2006).

    [17] Piotrowicz J. MacCormick C, Kowalczyk A, et al. Measurement of the electric dipole moments for transitions to rubidium Rydberg states via Autler-Townes splitting[J]. New Journal of Physics, 13, 093012(2011).

    [18] Gordon J A, Holloway C L, Schwarzkopf A et al. Millimeter wave detection via Autler-Townes splitting in rubidium Rydberg atoms[J]. Applied Physics Letters, 105, 024104(2014).

    [19] Scully M O, Zubairy M S[M]. Quantum optics, 193-219(1997).

    Suling Sang. Coherent Control of Multi-Dressed Four-Wave Mixing Autler-Townes Splitting[J]. Laser & Optoelectronics Progress, 2019, 56(8): 081901
    Download Citation