• Photonics Research
  • Vol. 7, Issue 5, 526 (2019)
Min Liu1, Wending Zhang1、*, Fanfan Lu1, Tianyang Xue1, Xin Li1, Lu Zhang1, Dong Mao1, Ligang Huang2, Feng Gao3, Ting Mei1、4, and Jianlin Zhao1
Author Affiliations
  • 1MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710072, China
  • 2MOE Key Laboratory of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044, China
  • 3MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • 4e-mail: ting.mei@ieee.org
  • show less
    DOI: 10.1364/PRJ.7.000526 Cite this Article Set citation alerts
    Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, Jianlin Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(5): 526 Copy Citation Text show less
    References

    [1] S. Schlücker. Surface-enhanced Raman spectroscopy: concepts and chemical applications. Angew. Chem., 53, 4756-4795(2014).

    [2] F. Y. Yang, H. R. Zhang, H. M. Feng, J. J. Dong, C. Wang, Q. Liu. Bionic SERS chip with super-hydrophobic and plasmonic micro/nano dual structure. Photon. Res., 6, 77-83(2018).

    [3] S. Y. Ding, J. Yi, J. F. Li, B. Ren, D. Y. Wu, R. Panneerselvam, Z. Q. Tian. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater., 1, 16021(2016).

    [4] H. K. Chen, X. J. Wu, Y. Q. Zhang, Y. Yang, C. J. Min, S. W. Zhu, X. C. Yuan, Q. L. Bao, J. Bu. Wide-field in situ multiplexed Raman imaging with superresolution. Photon. Res., 6, 530-534(2018).

    [5] B. Sharma, R. R. Frontiera, A. I. Henry, E. Ringe, R. P. V. Duyne. SERS: materials, applications, and the future. Mater. Today, 15, 16-25(2012).

    [6] F. F. Lu, W. D. Zhang, L. G. Huang, S. H. Liang, D. Mao, F. Gao, T. Mei, J. L. Zhao. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip. Opto-Electron. Adv., 1, 180010(2018).

    [7] V. Shalaev, A. Sarychev. Nonlinear optics of random metal-dielectric films. Phys. Rev. B, 57, 13265-13288(1998).

    [8] A. X. Wang, X. M. Kong. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials, 8, 3024-3052(2015).

    [9] S. Y. Ding, E. M. You, Z. Q. Tian, M. Moskovits. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev., 46, 4042-4076(2017).

    [10] H. L. Wang, Y. Y. Wang, Y. Wang, W. Q. Xu, S. P. Xu. Modulation of hot regions in waveguide-based evanescent-field-coupled localized surface plasmons for plasmon-enhanced spectroscopy. Photon. Res., 5, 527-535(2017).

    [11] S. M. Nie, S. R. Emory. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275, 1102-1106(1997).

    [12] C. Chen, Y. Li, S. Kerman, P. Neutens, K. Willems, S. Cornelissen, L. Lagae, T. Stakenborg, P. V. Dorpe. High spatial resolution nanoslit SERS for single-molecule nucleobase sensing. Nat. Commun., 9, 1733(2018).

    [13] P. Mao, C. X. Liu, G. Favraud, Q. Chen, M. Han, A. Fratalocchi, S. Zhang. Broadband single molecule SERS detection designed by warped optical spaces. Nat. Commun., 9, 5428(2018).

    [14] J. J. Wang, M. M. Hassan, W. Ahmad, T. H. Jiao, Y. Xu, H. H. Li, Q. Ouyang, Z. M. Guo, Q. S. Chen. A highly structured hollow ZnO@Ag nanosphere SERS substrate for sensing traces of nitrate and nitrite species in pickled food. Sens. Actuators B, 285, 302-309(2019).

    [15] C. L. Fernandez, L. Polavarapu, D. M. Solis, J. M. Taboada, F. Obelleiro, R. C. Contreras, I. S. Pastoriza, J. J. Perez. Gold nanorod-pNIPAM hybrids with reversible plasmon coupling: synthesis, modeling, and SERS properties. ACS Appl. Mater. Inter., 7, 12530-12538(2015).

    [16] H. Wang, K. B. Li, C. Xu, S. C. Xu, G. H. Li. Large-scale solvothermal synthesis of Ag nanocubes with high SERS activity. J. Alloy. Compd., 772, 150-156(2019).

    [17] K. Kim, J. W. Lee, K. S. Shin. Polyethylenimine-capped Ag nanoparticle film as a platform for detecting charged dye molecules by surface-enhanced Raman scattering and metal-enhanced fluorescence. ACS Appl. Mater. Interface, 4, 5498-5504(2012).

    [18] C. Cheng, J. Li, H. X. Lei, B. J. Li. Surface enhanced Raman scattering of gold nanoparticles aggregated by a gold-nanofilm-coated nanofiber. Photon. Res., 6, 357-362(2018).

    [19] H. Y. Xu, C. X. Kan, C. Z. Miao, C. S. Wang, J. J. Wei, Y. Ni, B. B. Lu, D. N. Shi. Synthesis of high-purity silver nanorods with tunable plasmonic properties and sensor behavior. Photon. Res., 5, 27-32(2017).

    [20] S. Juneja, M. S. Shishodia. Surface plasmon amplification in refractory transition metal nitrides based nanoparticle dimers. Opt. Commun., 433, 89-96(2019).

    [21] S. Li, L. G. Xu, W. Ma, H. Kuang, L. B. Wang, C. L. Xu. Triple Raman label-encoded gold nanoparticle trimers for simultaneous heavy metal ion detection. Small, 11, 3435-3439(2015).

    [22] W. D. Zhang, C. Li, K. Gao, F. F. Lu, M. Liu, X. Li, L. Zhang, D. Mao, F. Gao, L. G. Huang, T. Mei, J. L. Zhao. Surface-enhanced Raman spectroscopy with Au-nanoparticles substrates fabricated by using femtosecond pulse. Nanotechnology, 29, 205301(2018).

    [23] R. Chikkaraddy, G. A. E. Vandenbosch, X. Zheng, F. Benz, L. J. Brooks, B. D. Nijs, C. Carnegie, M. E. Kleemann, J. Mertens. How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror. ACS Photon., 4, 469-475(2017).

    [24] Z. L. Huang, X. Lei, Y. Liu, Z. W. Wang, X. J. Wang, Z. M. Wang, Q. H. Mao, G. W. Meng. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application. ACS Appl. Mater. Interface, 7, 17247-17254(2015).

    [25] T. Hutter, S. R. Elliott, S. Mahajan. Optical fibre-tip probes for SERS: numerical study for design considerations. Opt. Express, 26, 15539-15550(2018).

    [26] J. Zhang, S. M. Chen, T. C. Gong, X. L. Zhang, Y. Zhu. Tapered fiber probe modified by Ag nanoparticles for SERS detection. Plasmonics, 11, 743-751(2016).

    [27] J. Cao, D. Zhao, Q. H. Mao. A highly reproducible and sensitive fiber SERS probe fabricated by direct synthesis of closely packed Ag-NPs on the silanized fiber taper. Analyst, 142, 596-602(2017).

    [28] C. Wang, L. H. Zeng, Z. Lia, D. L. Li. Review of optical fibre probes for enhanced Raman sensing. J. Raman Spectrosc., 48, 1040-1055(2017).

    [29] H. Tanya, E. R. Stephen, M. Sumeet. Optical fibre-tip probes for SERS: numerical study for design considerations. Opt. Express, 26, 15539-15550(2018).

    [30] H. X. Xu, M. Kall. Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. Chem. Phys. Chem., 4, 1001-1005(2003).

    [31] T. Itoh, K. Hashimoto, Y. Ozaki. Polarization dependences of surface plasmon bands and surface-enhanced Raman bands of single Ag nanoparticles. Appl. Phys. Lett., 83, 2274-2276(2003).

    [32] A. P. Yang, L. P. Du, X. J. Dou, F. F. Meng, C. L. Zhang, C. J. Min, J. Lin, X. C. Yuan. Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam. Plasmonics, 13, 991-996(2018).

    [33] F. F. Lu, T. X. Huang, L. Han, H. S. Su, H. Wang, M. Liu, W. D. Zhang, X. Wang, T. Mei. Tip-enhanced Raman spectroscopy with high-order fiber vector beam excitation. Sensors, 18, 3841(2018).

    [34] Q. W. Zhan. Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon., 1, 1-57(2009).

    [35] Z. D. Schultz, S. J. Stranick, I. W. Levin. Advantages and artifacts of higher order modes in nanoparticle-enhanced backscattering Raman imaging. Anal. Chem., 81, 9657-9663(2009).

    [36] Y. Saito, P. Verma. Polarization-controlled Raman microscopy and nanoscopy. J. Phys. Chem. Lett., 3, 1295-1300(2012).

    [37] H. Chen, F. Tian, J. M. Chi, J. Kanka, H. Du. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing. Opt. Lett., 39, 5822-5825(2014).

    [38] A. W. Snyder, J. Love. Optical Waveguide Theory, 252-260(2012).

    [39] X. Q. Wu, L. M. Tong. Optical microfibers and nanofibers. Nanophotonics, 2, 407-428(2013).

    [40] T. Liu, X. S. Xiao, C. X. Yang. Surfactantless photochemical deposition of gold nanoparticles optical on an optical fiber core for surface-enhanced Raman scattering. Langmuir, 27, 4623-4626(2011).

    [41] W. D. Zhang, L. G. Huang, K. Y. Wei, P. Li, B. Q. Jiang, D. Mao, F. Gao, T. Mei, G. Q. Zhang, J. L. Zhao. Cylindrical vector beam generation in fiber with mode selectivity and wavelength tunability over broadband by acoustic flexural wave. Opt. Express, 24, 10376-10384(2016).

    [42] K. Y. Wei, W. D. Zhang, L. G. Huang, D. Mao, F. Gao, T. Mei, J. L. Zhao. Generation of cylindrical vector beams and optical vortex by two acoustically induced fiber gratings with orthogonal vibration directions. Opt. Express, 25, 2733-2741(2017).

    [43] X. C. Zhang, W. D. Zhang, C. Li, D. Mao, F. Gao, L. G. Huang, D. X. Yang, T. Mei, J. L. Zhao. All-fiber cylindrical vector beams laser based on an acoustically-induced fiber grating. J. Opt., 20, 075608(2018).

    CLP Journals

    [1] Wending Zhang, Lu Zhang, Chao Meng, Feng Gao. Generation of nanosecond cylindrical vector beams in two-mode fiber and its applications of stimulated Raman scattering[J]. Chinese Optics Letters, 2021, 19(1): 010603

    [2] Qian Zhao, Shijie Tu, Qiannan Lei, Chengshan Guo, Qiwen Zhan, Yangjian Cai. Creation of cylindrical vector beams through highly anisotropic scattering media with a single scalar transmission matrix calibration[J]. Photonics Research, 2022, 10(7): 1617

    [3] Houkai Chen, Yuquan Zhang, Yanmeng Dai, Changjun Min, Siwei Zhu, Xiaocong Yuan. Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization[J]. Photonics Research, 2020, 8(2): 103

    [4] Lu Zhang, Wending Zhang, Fanfan Lu, Zhiqiang Yang, Tianyang Xue, Min Liu, Chao Meng, Peng Li, Dong Mao, Ting Mei, Jianlin Zhao. Azimuthal vector beam exciting silver triangular nanoprisms for increasing the performance of surface-enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(12): 1447

    Min Liu, Wending Zhang, Fanfan Lu, Tianyang Xue, Xin Li, Lu Zhang, Dong Mao, Ligang Huang, Feng Gao, Ting Mei, Jianlin Zhao. Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy[J]. Photonics Research, 2019, 7(5): 526
    Download Citation