• Laser & Optoelectronics Progress
  • Vol. 58, Issue 17, 1714006 (2021)
Runping Chen1、2, Dongyun Zhang1、2、*, Songtao Hu1、2, Yangli Xu1、2, Tingting Huang1、2, Long Zhang1、2, and Zhiyuan Liu1、2
Author Affiliations
  • 1Institute for Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Beijing Engineering Research Center of 3D Printing for Digital Medical Health, Beijing , 100124, China
  • show less
    DOI: 10.3788/LOP202158.1714006 Cite this Article Set citation alerts
    Runping Chen, Dongyun Zhang, Songtao Hu, Yangli Xu, Tingting Huang, Long Zhang, Zhiyuan Liu. Compressive Properties and Numerical Simulation of Porous Structure Fabricated by Laser Powder Bed Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714006 Copy Citation Text show less
    References

    [1] Navarro M, Michiardi A, Castaño O et al. Biomaterials in orthopaedics[J]. Journal of the Royal Society Interface, 5, 1137-1158(2008).

    [2] Thieme M, Wieters K P, Bergner F et al. Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants[J]. Journal of Materials Science: Materials in Medicine, 12, 225-231(2001).

    [3] Li Y, Guo Z M, Hao J J et al. Porosity and mechanical properties of porous titanium fabricated by gelcasting[J]. Rare Metals, 27, 282-286(2008).

    [4] Erk K A, Dunand D C, Shull K R. Titanium with controllable pore fractions by thermoreversible gelcasting of TiH2[J]. Acta Materialia, 56, 5147-5157(2008).

    [5] Yook S W, Yoon B H, Kim H E et al. Porous titanium (Ti) scaffolds by freezing TiH2/camphene slurries[J]. Materials Letters, 62, 4506-4508(2008).

    [6] Zou C M, Zhang E L, Li M W et al. Preparation, microstructure and mechanical properties of porous titanium sintered by Ti fibres[J]. Journal of Materials Science: Materials in Medicine, 19, 401-405(2008).

    [7] Peng D Q, Tang N X. A preliminary study on porous titanium as a new biomaterial[J]. Medical Journal of Chinese People’s Liberation Army, 9, 34-36(1984).

    [8] Zhang E L, Zou Z E, Zeng S Y. Imbedded body in porous titanium of biologic medical use, and preparation method[P].

    [9] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [10] Zhang G H, Guo S Q, Huang S et al. Relative density of GH4169 superalloy prepared by selective laser melting[J]. Laser & Optoelectronics Progress, 57, 031404(2020).

    [11] Lin H, Yang Y Q, Zhang G Q et al. Tribological performance of medical CoCrMo alloy fabricated by selective laser melting[J]. Acta Optica Sinica, 36, 1114003(2016).

    [12] Yin B Z, Qin Y, Wen P et al. Laser powder bed fusion for fabrication of metal orthopedic implants[J]. Chinese Journal of Lasers, 47, 1100001(2020).

    [13] Wu X Z, Liu H Q, Wang F Y et al. The study on mechanical properties of porous tantalum components formed by laser selective melting[J]. Laser Journal, 40, 154-160(2019).

    [14] Heinl P, Müller L, Körner C et al. Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting[J]. Acta Biomaterialia, 4, 1536-1544(2008).

    [15] Chen J K, Wu M W, Cheng T L et al. Continuous compression behaviors of selective laser melting Ti-6Al-4V alloy with cuboctahedron cellular structures[J]. Materials Science and Engineering: C, 100, 781-788(2019).

    [16] Ataee A, Li Y C, Fraser D et al. Anisotropic Ti-6Al-4V gyroid scaffolds manufactured by electron beam melting (EBM) for bone implant applications[J]. Materials & Design, 137, 345-354(2018).

    [17] Parthasarathy J, Starly B, Raman S et al. Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)[J]. Journal of the Mechanical Behavior of Biomedical Materials, 3, 249-259(2010).

    [18] Xiao Z F, Yang Y Q, Xiao R et al. Evaluation of topology-optimized lattice structures manufactured via selective laser melting[J]. Materials & Design, 143, 27-37(2018).

    [19] Spears T G, Gold S A. In-process sensing in selective laser melting (SLM) additive manufacturing[J]. Integrating Materials and Manufacturing Innovation, 5, 16-40(2016).

    [20] Cao X Y. Topology optimization design for porous lattice structure and manufactured by selective laser melting[D](2016).

    [21] Xu Y L. Mechanical properties tailoring of porous structure using topology optimization and selective laser melting[D](2019).

    [22] Gibson L J, Ashby M F. Cellular solids: structure and properties. Liu P S, Transl, 87-89(2003).

    [23] Gorny B, Niendorf T, Lackmann J et al. In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting[J]. Materials Science and Engineering: A, 528, 7962-7967(2011).

    [24] Stamboulis A G, Boccaccini A R, Hench L L. Novel biodegradable polymer/bioactive glass composites for tissue engineering applications[J]. Advanced Engineering Materials, 4, 105-109(2002).

    [25] Bonfield W, Wang M, Tanner K E. Interfaces in analogue biomaterials[J]. Acta Materialia, 46, 2509-2518(1998).

    Runping Chen, Dongyun Zhang, Songtao Hu, Yangli Xu, Tingting Huang, Long Zhang, Zhiyuan Liu. Compressive Properties and Numerical Simulation of Porous Structure Fabricated by Laser Powder Bed Fusion[J]. Laser & Optoelectronics Progress, 2021, 58(17): 1714006
    Download Citation