• Opto-Electronic Engineering
  • Vol. 46, Issue 3, 1 (2019)
Wei Ran1, Zang Jinliang1、*, Liu Ying1, Fan Fenglan1, Huang Zhiyun2, Zhu Lili2, and Tan Xiaodi2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.12086/oee.2019.180598 Cite this Article
    Wei Ran, Zang Jinliang, Liu Ying, Fan Fenglan, Huang Zhiyun, Zhu Lili, Tan Xiaodi. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1 Copy Citation Text show less
    References

    [1] Gabor D. A new microscopic principle[J]. Nature, 1948, 161(4098): 777–778.

    [2] Leith E N, Upatnieks J. Reconstructed wavefronts and communication theory[J]. Journal of the Optical Society of America, 1962, 52(10): 1123–1130.

    [3] Denisyuk Y N. Photographic reconstruction of the optical properties of an object in its own scattered radiation field[J]. Soviet Physics Doklady, 1962, 7: 543–545.

    [4] Van der Lugt A, Rotz F B, Klooster Jr A. Character-reading by optical spatial filtering[M]//Tippett I C. Optical and Electro-Optical Information Processing. Cambridge, Massachusetts: Massachusetts Institute of Technology Press, 1965: 125–135.

    [5] Benton S A. Hologram reconstructions with extended incoherent sources[J]. Journal of the Optical Society of America, 1969, 59(10): 1545A.

    [6] White J G, Amos W B. Confocal microscopy comes of age[J]. Nature, 1987, 328(6126): 183–184.

    [7] Son J Y, Javidi B, Kwack K D. Methods for displaying three-dimensional images[J]. Proceedings of the IEEE, 2006, 94(3): 502–523.

    [8] Ostrovsky Y I, Butusov M M, Ostrovskaya G V. Interferometry by Holography[M]. Berlin: Springer, 1980: 184–191.

    [9] Yu Z L, Jin G F. Computer-generated Hologram[M]. Beijing: Tsinghua University Press, 1984: 12–30, 48–50.

    [10] Dhar L, Curtis K, F cke T. Holographic data storage: coming of age[J]. Nature Photonics, 2008, 2(7): 403–405.

    [11] Curtis K, Dhar L, Hill A, et al. Holographic Data Storage[M]. Hoboken, NJ: John Wiley & Sons Ltd, 2010: 1–14.

    [12] Coufal H J, Psaltis D, Sincerbox G T. Holographic Data Storage[M]. Berlin: Springer-Verlag, 2000: 1–17.

    [13] Heanue J F, Bashaw M C, Daiber A J, et al. Digital holographic storage system incorporating thermal fixing in lithium niobate[J]. Optics Letters, 1996, 21(19): 1615–1617.

    [14] Van Heerden P J. Theory of optical information storage in solids[J]. Applied Optics, 1963, 2(4): 393–400.

    [15] Heanue J F, Bashaw M C, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749–752.

    [16] Tao S Q. Recent advances in dense holographic storage[J]. Physics, 1997, 26(2): 79–85.

    [17] Tan X D. Optical data storage technologies for big data era[J]. Infrared and Laser Engineering, 2016, 45(9): 19–22.

    [18] Kdnuggets. IDC study: digital universe in 2020[EB/OL]. (2012-12-15). [2018-11-1]. https://www.kdnuggets.com/ 2012/12/idc-digital-universe-2020.html.

    [19] Tan X D, Lin X, Wu A A, et al. High density collinear holographic data storage system[J]. Frontiers of Optoelectronics, 2014, 7(4): 443–449.

    [20] Lohmann A W. Reconstruction of vectorial wavefronts[J]. Applied Optics, 1965, 4(12): 1667–1668.

    [21] Fourney M E, Waggoner A P, Mate K V. Recording polarization effects via holography[J]. Journal of the Optical Society of America, 1968, 58(5): 701–702.

    [22] Kakichashvili S D. Method for phase polarization recording of holograms[J]. Soviet Journal of Quantum Electronics, 1974, 4(6): 795–798.

    [23] Nikolova L, Ramanujam P S. Polarization Holography[M]. Cambridge: Cambridge University Press, 2009: 25–85.

    [24] Kuroda K, Matsuhashi Y, Fujimura R, et al. Theory of polarization holography[J]. Optical Review, 2011, 18(5): 374.

    [25] Zang J L, Wu A A, Liu Y, et al. Characteristics of volume polarization holography with linear polarization light[J]. Optical Review, 2015, 22(5): 829–831.

    [26] Wu A A, Kang G G, Zang J L, et al. Null reconstruction of orthogonal circular polarization hologram with large recording angle[J]. Optics Express, 2015, 23(7): 8880–8887.

    [27] Zhang Y Y, Kang G G, Zang J L, et al. Inverse polarizing effect of an elliptical-polarization recorded hologram at a large cross angle[J]. Optics Letters, 2016, 41(17): 4126–4129.

    [28] Hong Y F, Kang G G, Zang J L, et al. Investigation of faithful reconstruction in nonparaxial approximation polarization holography[J]. Applied Optics, 2017, 56(36): 10024–10029.

    [29] Hong Y F, Zang J L, Liu Y, et al. Review and prospect of polarization holography[J]. Chinese Optics, 2017, 10(5): 588–602.

    [30] Pu S Z, Yang T S, Yao B L, et al. Photochromic diarylethene for polarization holographic optical recording[J]. Materials Letters, 2007, 61(3): 855–859.

    [31] Fu S C, Liu Y C, Dong L, et al. Photo-dynamics of polarization holographic recording in spirooxazine-doped polymer films[J]. Materials Letters, 2005, 59(11): 1449–1452.

    [32] Fu S C, Liu Y C, Lu Z F, et al. Photo-induced birefringence and polarization holography in polymer films containing spirooxazine compounds pre-irradiated by UV light[J]. Optics Communications, 2004, 242(1–3): 115–122.

    [33] Pham V P, Manivannan G, Lessard R A, et al. Real-time dynamic polarization holographic recording on auto-erasable azo-dye doped PMMA storage media[J]. Optical Materials, 1995, 4(4): 467–475.

    [34] Couture J J A. Polarization holographic characterization of organic azo dyes/PVA films for real time applications[J]. Applied Optics, 1991, 30(20): 2858–2866.

    [35] Kawatsuki N, Matsushita H, Kondo M, et al. Photoinduced reorientation and polarization holography in a new photopolymer with 4-methoxy-N-benzylideneaniline side groups[J]. APL Materials, 2013, 1(2): 022103.

    [36] Cipparrone G, Pagliusi P, Provenzano C, et al. Polarization holographic recording in amorphous polymer with photoinduced linear and circular birefringence[J]. Journal of Physical Chemistry B, 2010, 114(27): 8900–8904.

    [37] Mao W D, Sun Q H, Baig S, et al. Red light holographic recording and readout on an azobenzene-LC polymer hybrid composite system[J]. Optics Communications, 2015, 355: 256–260.

    [38] Zhao F L, Wang C S, Qin M, et al. Polarization holographic gratings in an azobenzene copolymer with linear and circular photoinduced birefringence[J]. Optics Communications, 2015, 338: 461–466.

    [39] Gallego S, Ortu o M F, Neipp C, et al. Improved maximum uniformity and capacity of multiple holograms recorded in absorbent photopolymers[J]. Optics Express, 2007, 15(15): 9308–9319.

    [40] Gleeson M R, Sabol D, Liu S, et al. Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length[J]. Journal of the Optical Society of America B, 2008, 25(3): 396–406.

    [41] Liu S, Gleeson M R, Sheridan J T. Analysis of the photoabsorptive behavior of two different photosensitizers in a photopolymer material[J]. Journal of the Optical Society of America B, 2009, 26(3): 528–536.

    [42] Garc a C, Fimia A, Pascual I. Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization[J]. Applied Physics B, 2001, 72(3): 311–316.

    [43] Gallego S, Ortu o M, Neipp C, et al. 3 dimensional analysis of holographic photopolymers based memories[J]. Optics Express, 2005, 13(9): 3543–3557.

    [44] Gallego S, Ortu o M, Neipp C, et al. 3-dimensional characterization of thick grating formation in PVA/AA based photopolymer[J]. Optics Express, 2006, 14(12): 5121–5128.

    [45] Nikolova L, Markovsky P, Tomova N, et al. Optically-controlled photo-induced birefringence in photo-anisotropic materials[J]. Journal of Modern Optics, 1988, 35(11): 1789–1799.

    [46] Todorov T, Nikolova L, Tomova N, et al. Photoinduced anisotropy in rigid dye solutions for transient polarization holography[J]. IEEE Journal of Quantum Electronics, 1986, 22(8): 1262–1267.

    [47] Barada D, Ochiai T, Fukuda T, et al. Dual-channel polarization holography: a technique for recording two complex amplitude components of a vector wave[J]. Optics Letters, 2012, 37(21): 4528–4530.

    [48] Ochiai T, Barada D, Fukuda T, et al. Angular multiplex recording of data pages by dual-channel polarization holography[J]. Optics Letters, 2013, 38(5): 748–750.

    [49] Lin S H, Cho S L, Chou S F, et al. Volume polarization holographic recording in thick photopolymer for optical memory[J]. Optics express, 2014, 22(12): 14944–14957.

    [50] Zang J L, Kang G G, Li P, et al. Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography[J]. Optics Letters, 2017, 42(7): 1377–1380.

    [51] Ono H, Wakabayashi H, Sasaki T, et al. Vector holograms using radially polarized light[J]. Applied Physics Letters, 2009, 94(7): 71114.

    [52] Ruiz U, Pagliusi P, Provenzano C, et al. Highly efficient generation of vector beams through polarization holograms [J]. Applied Physics Letters, 2013, 102(16): 161104.

    [53] Matharu A S, Jeeva S, Ramanujam P S. Liquid crystals for holographic optical data storage [J]. Chemical Society Reviews, 2007, 36(12): 1868.

    CLP Journals

    [1] JIN Xin, HU Ying. Detection of Vehicle Crews Based on Modified Faster R-CNN[J]. Infrared Technology, 2020, 42(11): 1103

    Wei Ran, Zang Jinliang, Liu Ying, Fan Fenglan, Huang Zhiyun, Zhu Lili, Tan Xiaodi. Review on polarization holography for high density storage[J]. Opto-Electronic Engineering, 2019, 46(3): 1
    Download Citation