• Photonics Research
  • Vol. 8, Issue 4, 490 (2020)
Xu-Sheng Xu1、†, Hao Zhang1、†, Xiang-Yu Kong1, Min Wang1, and Gui-Lu Long1、2、3、*
Author Affiliations
  • 1State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
  • 2Beijing Information Science and Technology National Research Center, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    DOI: 10.1364/PRJ.385046 Cite this Article Set citation alerts
    Xu-Sheng Xu, Hao Zhang, Xiang-Yu Kong, Min Wang, Gui-Lu Long. Frequency-tuning-induced state transfer in optical microcavities[J]. Photonics Research, 2020, 8(4): 490 Copy Citation Text show less
    References

    [1] D. A. Miller. Are optical transistors the logical next step?. Nat. Photonics, 4, 3-5(2010).

    [2] W. Chen, K. M. Beck, R. Bücker, M. Gullans, M. D. Lukin, H. Tanji-Suzuki, V. Vuletić. All-optical switch and transistor gated by one stored photon. Science, 341, 768-770(2013).

    [3] X. Guo, C.-L. Zou, H. Jung, H. X. Tang. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett., 117, 123902(2016).

    [4] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 82, 1041-1093(2010).

    [5] T. Wilk, S. C. Webster, A. Kuhn, G. Rempe. Single-atom single-photon quantum interface. Science, 317, 488-490(2007).

    [6] J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett., 78, 3221-3224(1997).

    [7] M. C. Kuzyk, H. Wang. Scaling phononic quantum networks of solid-state spins with closed mechanical subsystems. Phys. Rev. X, 8, 041027(2018).

    [8] N. V. Vitanov, T. Halfmann, B. W. Shore, K. Bergmann. Laser-induced population transfer by adiabatic passage techniques. Annu. Rev. Phys. Chem., 52, 763-809(2001).

    [9] K. Bergmann, H. Theuer, B. Shore. Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys., 70, 1003-1025(1998).

    [10] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, J. G. Muga. Shortcuts to adiabaticity: concepts, methods, and applications. Rev. Mod. Phys., 91, 045001(2019).

    [11] M. V. Berry. Transitionless quantum driving. J. Phys. A, 42, 365303(2009).

    [12] X. Chen, I. Lizuain, A. Ruschhaupt, D. Guéry-Odelin, J. Muga. Shortcut to adiabatic passage in two-and three-level atoms. Phys. Rev. Lett., 105, 123003(2010).

    [13] A. Baksic, H. Ribeiro, A. A. Clerk. Speeding up adiabatic quantum state transfer by using dressed states. Phys. Rev. Lett., 116, 230503(2016).

    [14] Y.-H. Chen, Y. Xia, Q.-Q. Chen, J. Song. Efficient shortcuts to adiabatic passage for fast population transfer in multiparticle systems. Phys. Rev. A, 89, 033856(2014).

    [15] Y. Liang, Q.-C. Wu, S.-L. Su, X. Ji, S. Zhang. Shortcuts to adiabatic passage for multiqubit controlled-phase gate. Phys. Rev. A, 91, 032304(2015).

    [16] X.-K. Song, H. Zhang, Q. Ai, J. Qiu, F.-G. Deng. Shortcuts to adiabatic holonomic quantum computation in decoherence-free subspace with transitionless quantum driving algorithm. New J. Phys., 18, 023001(2016).

    [17] K. J. Vahala. Optical microcavities. Nature, 424, 839-846(2003).

    [18] H. Jing, S. Özdemir, X.-Y. Lü, J. Zhang, L. Yang, F. Nori. PT-symmetric phonon laser. Phys. Rev. Lett., 113, 053604(2014).

    [19] B. Peng, Ş. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, L. Yang. Parity–time-symmetric whispering-gallery microcavities. Nat. Phys., 10, 394-398(2014).

    [20] L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, M. Xiao. Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators. Nat. Photonics, 8, 524-529(2014).

    [21] X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, Y.-F. Xiao. Chaos-assisted broadband momentum transformation in optical microresonators. Science, 358, 344-347(2017).

    [22] X.-Y. Lü, H. Jing, J.-Y. Ma, Y. Wu. PT-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett., 114, 253601(2015).

    [23] Z. Shen, Y.-L. Zhang, Y. Chen, C.-L. Zou, Y.-F. Xiao, X.-B. Zou, F.-W. Sun, G.-C. Guo, C.-H. Dong. Experimental realization of optomechanically induced non-reciprocity. Nat. Photonics, 10, 657-661(2016).

    [24] C.-H. Dong, Z. Shen, C.-L. Zou, Y.-L. Zhang, W. Fu, G.-C. Guo. Brillouin-scattering-induced transparency and non-reciprocal light storage. Nat. Commun., 6, 6193(2015).

    [25] C. L. Degen, F. Reinhard, P. Cappellaro. Quantum sensing. Rev. Mod. Phys., 89, 035002(2017).

    [26] W. Chen, Ş. K. Özdemir, G. Zhao, J. Wiersig, L. Yang. Exceptional points enhance sensing in an optical microcavity. Nature, 548, 192-196(2017).

    [27] N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y.-F. Xiao, S. Xiao, Q. Song. Far-field single nanoparticle detection and sizing. Optica, 4, 1151-1156(2017).

    [28] J. M. Ward, Y. Yang, F. Lei, X.-C. Yu, Y.-F. Xiao, S. N. Chormaic. Nanoparticle sensing beyond evanescent field interaction with a quasi-droplet microcavity. Optica, 5, 674-677(2018).

    [29] G.-Q. Qin, M. Wang, J.-W. Wen, D. Ruan, G.-L. Long. Brillouin cavity optomechanics sensing with enhanced dynamical backaction. Photon. Res., 7, 1440-1446(2019).

    [30] C. Hood, T. Lynn, A. Doherty, A. Parkins, H. Kimble. The atom-cavity microscope: single atoms bound in orbit by single photons. Science, 287, 1447-1453(2000).

    [31] T.-J. Wang, C. Wang. Universal hybrid three-qubit quantum gates assisted by a nitrogen-vacancy center coupled with a whispering-gallery-mode microresonator. Phys. Rev. A, 90, 052310(2014).

    [32] X.-F. Liu, T.-J. Wang, C. Wang. Optothermal control of gains in erbium-doped whispering-gallery microresonators. Opt. Lett., 43, 326-329(2018).

    [33] H.-R. Wei, F.-G. Deng. Compact quantum gates on electron-spin qubits assisted by diamond nitrogen-vacancy centers inside cavities. Phys. Rev. A, 88, 042323(2013).

    [34] B.-C. Ren, F.-G. Deng. Robust hyperparallel photonic quantum entangling gate with cavity qed. Opt. Express, 25, 10863-10873(2017).

    [35] G.-Y. Wang, T. Li, Q. Ai, A. Alsaedi, T. Hayat, F.-G. Deng. Faithful entanglement purification for high-capacity quantum communication with two-photon four-qubit systems. Phys. Rev. Appl., 10, 054058(2018).

    [36] M. Li, M. Zhang. Robust universal photonic quantum gates operable with imperfect processes involved in diamond nitrogen-vacancy centers inside low-Q single-sided cavities. Opt. Express, 26, 33129-33141(2018).

    [37] S.-S. Chen, H. Zhang, Q. Ai, G.-J. Yang. Phononic entanglement concentration via optomechanical interactions. Phys. Rev. A, 100, 052306(2019).

    [38] G.-Q. Qin, H. Yang, X. Mao, J.-W. Wen, M. Wang, D. Ruan, G.-L. Long. Manipulation of optomechanically induced transparency and absorption by indirectly coupling to an auxiliary cavity mode. Opt. Express, 28, 580-592(2020).

    [39] J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates. Boson sampling on a photonic chip. Science, 339, 798-801(2013).

    [40] K. Xia, J. Twamley. All-optical switching and router via the direct quantum control of coupling between cavity modes. Phys. Rev. X, 3, 031013(2013).

    [41] L. Tian. Adiabatic state conversion and pulse transmission in optomechanical systems. Phys. Rev. Lett., 108, 153604(2012).

    [42] Y.-D. Wang, A. A. Clerk. Using interference for high fidelity quantum state transfer in optomechanics. Phys. Rev. Lett., 108, 153603(2012).

    [43] Y.-D. Wang, A. A. Clerk. Using dark modes for high-fidelity optomechanical quantum state transfer. New J. Phys., 14, 105010(2012).

    [44] H. Zhang, X.-K. Song, Q. Ai, H. Wang, G.-J. Yang, F.-G. Deng. Fast and robust quantum control for multimode interactions using shortcuts to adiabaticity. Opt. Express, 27, 7384-7392(2019).

    [45] X. Zhou, B.-J. Liu, L. Shao, X.-D. Zhang, Z.-Y. Xue. Quantum state conversion in opto-electro-mechanical systems via shortcut to adiabaticity. Laser Phys. Lett., 14, 095202(2017).

    [46] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [47] M. Gao, F.-C. Lei, C.-G. Du, G.-L. Long. Self-sustained oscillation and dynamical multistability of optomechanical systems in the extremely-large-amplitude regime. Phys. Rev. A, 91, 013833(2015).

    [48] F.-C. Lei, M. Gao, C. Du, Q.-L. Jing, G.-L. Long. Three-pathway electromagnetically induced transparency in coupled-cavity optomechanical system. Opt. Express, 23, 11508-11517(2015).

    [49] X. Jiang, M. Wang, M. C. Kuzyk, T. Oo, G.-L. Long, H. Wang. Chip-based silica microspheres for cavity optomechanics. Opt. Express, 23, 27260-27265(2015).

    [50] C. Dong, V. Fiore, M. C. Kuzyk, H. Wang. Optomechanical dark mode. Science, 338, 1609-1613(2012).

    [51] M. C. Kuzyk, H. Wang. Controlling multimode optomechanical interactions via interference. Phys. Rev. A, 96, 023860(2017).

    [52] J.-Q. Liao, L. Tian. Macroscopic quantum superposition in cavity optomechanics. Phys. Rev. Lett., 116, 163602(2016).

    [53] Y.-C. Liu, Y.-F. Xiao, X. Luan, C. W. Wong. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett., 110, 153606(2013).

    [54] Y.-S. Park, A. K. Cook, H. Wang. Cavity QED with diamond nanocrystals and silica microspheres. Nano Lett., 6, 2075-2079(2006).

    [55] B. Peng, Ş. K. Özdemir, W. Chen, F. Nori, L. Yang. What is and what is not electromagnetically induced transparency in whispering-gallery microcavities. Nat. Commun., 5, 5082(2014).

    [56] T. Wang, Y.-Q. Hu, C.-G. Du, G.-L. Long. Multiple EIT and EIA in optical microresonators. Opt. Express, 27, 7344-7353(2019).

    [57] V. Ilchenko, P. Volikov, V. Velichansky, F. Treussart, V. Lefevre-Seguin, J.-M. Raimond, S. Haroche. Strain-tunable high-Q optical microsphere resonator. Opt. Commun., 145, 86-90(1998).

    [58] W. Von Klitzing, R. Long, V. S. Ilchenko, J. Hare, V. Lefèvre-Seguin. Frequency tuning of the whispering-gallery modes of silica microspheres for cavity quantum electrodynamics and spectroscopy. Opt. Lett., 26, 166-168(2001).

    [59] K. N. Dinyari, R. J. Barbour, D. A. Golter, H. Wang. Mechanical tuning of whispering gallery modes over a 0.5  THz tuning range with MHz resolution in a silica microsphere at cryogenic temperatures. Opt. Express, 19, 17966-17972(2011).

    [60] R. Henze, T. Seifert, J. Ward, O. Benson. Tuning whispering gallery modes using internal aerostatic pressure. Opt. Lett., 36, 4536-4538(2011).

    [61] R. Henze, J. M. Ward, O. Benson. Temperature independent tuning of whispering gallery modes in a cryogenic environment. Opt. Express, 21, 675-680(2013).

    [62] Z.-H. Zhou, C.-L. Zou, Y. Chen, Z. Shen, G.-C. Guo, C.-H. Dong. Broadband tuning of the optical and mechanical modes in hollow bottle-like microresonators. Opt. Express, 25, 4046-4053(2017).

    [63] X.-S. Xu, H. Zhang, M. Wang, D. Ruan, G.-L. Long. Arbitrary function resonance tuner of the optical microcavity with sub-MHz resolution. Opt. Lett., 44, 3250-3253(2019).

    Xu-Sheng Xu, Hao Zhang, Xiang-Yu Kong, Min Wang, Gui-Lu Long. Frequency-tuning-induced state transfer in optical microcavities[J]. Photonics Research, 2020, 8(4): 490
    Download Citation