• Photonics Research
  • Vol. 7, Issue 2, 172 (2019)
Xu Wang1, Feng Zhou1, Dingshan Gao1, Yanxian Wei1, Xi Xiao2、3, Shaohua Yu2, Jianji Dong1、*, and Xinliang Zhang1
Author Affiliations
  • 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
  • 2State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts and Telecommunications, Wuhan 430074, China
  • 3e-mail: xxiao@wri.com.cn
  • show less
    DOI: 10.1364/PRJ.7.000172 Cite this Article Set citation alerts
    Xu Wang, Feng Zhou, Dingshan Gao, Yanxian Wei, Xi Xiao, Shaohua Yu, Jianji Dong, Xinliang Zhang. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 172 Copy Citation Text show less
    References

    [1] K. Chang. RF and Microwave Wireless Systems(2004).

    [2] F. Neri. Introduction to Electronic Defense Systems(2006).

    [3] J. R. Tuttle. Traditional and emerging technologies and applications in the radio frequency identification (RFID) industry. IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 5-8(1997).

    [4] K. Domdouzis, B. Kumar, C. Anumba. Radio-frequency identification (RFID) applications: a brief introduction. Adv. Eng. Inform., 21, 350-355(2007).

    [5] X. Zou, B. Lu, W. Pan, L. Yan, A. Stöhr, J. Yao. Photonics for microwave measurements. Laser Photon. Rev., 10, 711-734(2016).

    [6] S. Pan, J. Yao. Photonics-based broadband microwave measurement. J. Lightwave Technol., 35, 3498-3513(2017).

    [7] J. Capmany, D. Novak. Microwave photonics combines two worlds. Nat. Photonics, 1, 319-330(2007).

    [8] M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, B. J. Eggleton. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nat. Photonics, 3, 139-143(2009).

    [9] L. V. T. Nguyen, D. B. Hunter. A photonic technique for microwave frequency measurement. IEEE Photon. Technol. Lett., 18, 1188-1190(2006).

    [10] L. Liu, F. Jiang, S. Yan, S. Min, M. He, D. Gao, J. Dong. Photonic measurement of microwave frequency using a silicon microdisk resonator. Opt. Commun., 335, 266-270(2015).

    [11] D. Marpaung. On-chip photonic-assisted instantaneous microwave frequency measurement system. IEEE Photon. Technol. Lett., 25, 837-840(2013).

    [12] D. Marpaung, C. Roeloffzen, A. Leinse, M. Hoekman. A photonic chip based frequency discriminator for a high performance microwave photonic link. Opt. Express, 18, 27359-27370(2010).

    [13] J. S. Fandiño, P. Muñoz. Photonics-based microwave frequency measurement using a double-sideband suppressed-carrier modulation and an InP integrated ring-assisted Mach-Zehnder interferometer filter. Opt. Lett., 38, 4316-4319(2013).

    [14] M. Pagani, B. Morrison, Y. Zhang, A. Casas-Bedoya, T. Aalto, M. Harjanne, M. Kapulainen, B. J. Eggleton, D. Marpaung. Low-error and broadband microwave frequency measurement in a silicon chip. Optica, 2, 751-756(2015).

    [15] M. Burla, X. Wang, M. Li, L. Chrostowski, J. Azaña. Wideband dynamic microwave frequency identification system using a low-power ultracompact silicon photonic chip. Nat. Commun., 7, 13004(2016).

    [16] M. Burla, X. Wang, M. Li, L. Chrostowski, J. Azaña. On-chip instantaneous microwave frequency measurement system based on a waveguide Bragg grating on silicon. CLEO 2015, STh4F.7(2015).

    [17] G. W. Anderson, D. C. Webb, A. E. Spezio, J. N. Lee. Advanced channelization for RF, microwave, and millimeterwave applications. Proc. IEEE, 79, 355-388(1991).

    [18] D. B. Hunter, L. G. Edvell, M. A. Englund. Wideband microwave photonic channelised receiver. International Topical Meeting on Microwave Photonics, 249-252(2005).

    [19] A. O. J. Wiberg, D. J. Esman, L. Liu, J. R. Adleman, S. Zlatanovic, V. Ataie, E. Myslivets, B. P. P. Kuo, N. Alic, E. W. Jacobs, S. Radic. Coherent filterless wideband microwave/millimeter-wave channelizer based on broadband parametric mixers. J. Lightwave Technol., 32, 3609-3617(2014).

    [20] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, M. Qi. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 4, 117-122(2010).

    [21] W. Zhang, J. Zhang, J. Yao. Largely chirped microwave waveform generation using a silicon-based on-chip optical spectral shaper. Microwave Photonics (MWP) and International Topical Meeting on 9th Asia-Pacific Microwave Photonics Conference (APMP), 51-53(2014).

    [22] W. Zhang, J. Yao. Photonic generation of linearly chirped microwave waveforms using a silicon-based on-chip spectral shaper incorporating two linearly chirped waveguide Bragg gratings. J. Lightwave Technol., 33, 5047-5054(2015).

    [23] J. Yao, W. Li, W. Zhang. Frequency-hopping microwave waveform generation based on a frequency-tunable optoelectronic oscillator. Optical Fiber Communication Conference, W1J.2(2014).

    [24] P. Zhou, F. Zhang, X. Ye, Q. Guo, S. Pan. Flexible frequency-hopping microwave generation by dynamic control of optically injected semiconductor laser. IEEE Photon. J., 8, 5501909(2016).

    [25] S. T. Winnall, A. C. Lindsay. A Fabry-Perot scanning receiver for microwave signal processing. IEEE Trans. Microw. Theory Tech., 47, 1385-1390(1999).

    [26] L. V. T. Nguyen. Microwave photonic technique for frequency measurement of simultaneous signals. IEEE Photon. Technol. Lett., 21, 642-644(2009).

    [27] P. Rugeland, Z. Yu, C. Sterner, O. Tarasenko, G. Tengstrand, W. Margulis. Photonic scanning receiver using an electrically tuned fiber Bragg grating. Opt. Lett., 34, 3794-3796(2009).

    [28] S. Zheng, S. Ge, X. Zhang, H. Chi, X. Jin. High-resolution multiple microwave frequency measurement based on stimulated Brillouin scattering. IEEE Photon. Technol. Lett., 24, 1115-1117(2012).

    [29] T. A. Nguyen, E. H. W. Chan, R. A. Minasian. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique. Opt. Lett., 39, 2419-2422(2014).

    [30] X. Long, W. Zou, J. Chen. Broadband instantaneous frequency measurement based on stimulated Brillouin scattering. Opt. Express, 25, 2206-2214(2017).

    [31] H. Jiang, D. Marpaung, M. Pagani, K. Vu, D.-Y. Choi, S. J. Madden, L. Yan, B. J. Eggleton. Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter. Optica, 3, 30-34(2016).

    [32] F. Zhou, H. Chen, X. Wang, L. Zhou, J. Dong, X. Zhang. Photonic multiple microwave frequency measurement based on frequency-to-time mapping. IEEE Photon. J., 10, 5500807(2018).

    [33] H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, X. Zhang. A Continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator. J. Lightwave Technol., 36, 4312-4318(2018).

    [34] D. Marpaung, B. Morrison, R. Pant, C. Roeloffzen, A. Leinse, M. Hoekman, R. Heideman, B. J. Eggleton. Si3N4 ring resonator-based microwave photonic notch filter with an ultrahigh peak rejection. Opt. Express, 21, 23286-23294(2013).

    [35] F. Zhou, X. Wang, S. Yan, X. Hu, Y. Zhang, H. Qiu, X. Xiao, J. Dong, X. Zhang. Frequency-hopping microwave generation with a large time-bandwidth product. IEEE Photon. J., 10, 7800809(2018).

    [36] Z. Wang, B. Tian, M. Pantouvaki, W. Guo, P. Absil, J. Van Campenhout, C. Merckling, D. Van Thourhout. Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics, 9, 837-842(2015).

    [37] Y. Sun, K. Zhou, Q. Sun, J. Liu, M. Feng, Z. Li, Y. Zhou, L. Zhang, D. Li, S. Zhang, M. Ikeda, S. Liu, H. Yang. Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si. Nat. Photonics, 10, 595-599(2016).

    [38] Z. Pan, X. Xu, C.-J. Chung, H. Dalir, H. Yan, K. Chen, Y. Wang, R. T. Chen. High speed modulator based on electro-optic polymer infiltrated subwavelength grating waveguide ring resonator. Optical Fiber Communication Conference, M2I.2(2018).

    [39] J. Sun, M. Sakib, J. Driscoll, R. Kumar, H. Jayatilleka, Y. Chetrit, H. Rong. A 128 Gb/s PAM4 silicon microring modulator. Optical Fiber Communication Conference, Th4A.7(2018).

    Xu Wang, Feng Zhou, Dingshan Gao, Yanxian Wei, Xi Xiao, Shaohua Yu, Jianji Dong, Xinliang Zhang. Wideband adaptive microwave frequency identification using an integrated silicon photonic scanning filter[J]. Photonics Research, 2019, 7(2): 172
    Download Citation