• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111402 (2020)
Jinjian Li1, Yi Liu2, and Shiliang Qu1、*
Author Affiliations
  • 1Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
  • 2Department of Optoelectronics Science, Harbin Institute of Technology at Weihai, Weihai, Shandong 264209, China
  • show less
    DOI: 10.3788/LOP57.111402 Cite this Article Set citation alerts
    Jinjian Li, Yi Liu, Shiliang Qu. Research Progress on Optical Fiber Functional Devices Fabricated by Femtosecond Laser Micro-Nano Processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111402 Copy Citation Text show less
    References

    [1] Kawata S, Sun H B, Tanaka T et al. Finer features for functional microdevices[J]. Nature, 412, 697-698(2001).

    [2] Serbin J, Egbert A, Ostendorf A et al. Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics[J]. Optics Letters, 28, 301-303(2003).

    [3] Tanaka T, Sun H B, Kawata S. Rapid sub-diffraction-limit laser micro/nanoprocessing in a threshold material system[J]. Applied Physics Letters, 80, 312-314(2002).

    [4] Teng Y, Zhou J J, Lin G et al. Recent research progress on femtosecond laser induced microstructures in glasses[J]. International Journal of Optomechatronics, 6, 179-187(2012).

    [5] Li Q K, Yu Y H, Wang L et al. Sapphire-based Fresnel zone plate fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters, 28, 1290-1293(2016).

    [6] Guo Q, Yu Y S, Zheng Z M et al. Femtosecond laser inscribed sapphire fiber Bragg grating for high temperature and strain sensing[J]. IEEE Transactions on Nanotechnology, 18, 208-211(2019).

    [7] Deubel M, von Freymann G, Wegener M et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications[J]. Nature Materials, 3, 444-447(2004).

    [8] Li Y, Qu S L. Fabrication of spiral-shaped microfluidic channels in glass by femtosecond laser[J]. Materials Letters, 64, 1427-1429(2010).

    [9] Luo F F, Lin G, Sun H Y et al. Generation of bubbles in glass by a femtosecond laser[J]. Optics Communications, 284, 4592-4595(2011).

    [10] Cheng Y, Sugioka K, Midorikawa K et al. Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser[J]. Optics Letters, 28, 55-57(2003).

    [11] Kamlage G, Chichkov B N, Ostendorf A et al. Deep drilling of metals by femtosecond laser pulses[J]. Proceedings of SPIE, 4760, 394-397(2002).

    [12] Rao Y J, Deng M, Duan D W et al. Micro Fabry-Perot interferometers in silica fibers machined by femtosecond laser[J]. Optics Express, 15, 14123-14128(2007).

    [13] Nakaya T, Qiu J R, Zhou C H et al. Fabrication of Dammann gratings inside glasses by a femtosecond laser[J]. Chinese Physics Letters, 21, 1061-1063(2004).

    [14] Quante K, Ludwig K, Kern M. Marginal and internal fit of metal-ceramic crowns fabricated with a new laser melting technology[J]. Dental Materials, 24, 1311-1315(2008).

    [15] Torchia G, Rodenas A, Benayas A et al. Highly efficient laser action in femtosecond-written Nd∶yttrium aluminum garnet ceramic waveguides[J]. Applied Physics Letters, 92, 111103(2008).

    [16] Ran Z L, Liu S, Liu Q et al. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure[J]. Sensors, 14, 14330-14338(2014).

    [17] Wang P F, Zhao H Y, Brambilla G et al. Long period grating inscribed in multimode fibre interferometer and its application in refractive index sensing[J]. Proceedings of SPIE, 9634, 96346A(2015).

    [18] Liu Z, Liu Y X, Tang Y et al. Fabrication and application of a non-contact double-tapered optical fiber tweezers[J]. Optics Express, 25, 22480-22489(2017).

    [19] Subramanian K, Gabay I, Ferhanoglu O et al. Kagome fiber based ultrafast laser microsurgery probe delivering micro-Joule pulse energies[J]. Biomedical Optics Express, 7, 4639-4653(2016).

    [20] Nishimura N, Schaffer C B, Friedman B et al. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke[J]. Nature Methods, 3, 99-108(2006).

    [21] Xu H L, Cheng Y, Chin S L et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & Photonics Reviews, 9, 275-293(2015).

    [22] Guan C Y, Tian X Z, Li S Q et al. Long period fiber grating and high sensitivity refractive index sensor based on hollow eccentric optical fiber[J]. Sensors and Actuators B: Chemical, 188, 768-771(2013).

    [23] Chen Q Q, Fang Z J, Song H et al. Femtosecond laser induced space-selective precipitation of Cr 3+-doped ZnAl2O4 crystal in glass[J]. Journal of Alloys and Compounds, 699, 243-246(2017).

    [24] Chen Q Q, Song H, Zhang F T et al. A strategy for fabrication of controllable 3D pattern containing clusters and nanoparticles inside a solid material[J]. Nanoscale, 9, 9083-9088(2017).

    [25] Qiu J R. Formation and applications of periodic structures in transparent materials induced by single fs laser beam[J]. MATEC Web of Conferences, 8, 03008(2013).

    [26] Zhang F, Yu Y, Cheng C et al. Wavelength response and thermal stability of embedded nanograting structure light attenuator fabricated by direct femtosecond laser writing[J]. Applied Physics B, 117, 53-58(2014).

    [27] Ran Z L, Bao H H, Cook K et al. Combined regenerated fibre Bragg gratings and Fabry-Perot etalons for dual strain and temperature sensing[J]. Proceedings of SPIE, 9634, 963459(2015).

    [28] Rao Y J, Ran Z L, Liao X et al. Hybrid LPFG/MEFPI sensor for simultaneous measurement of high-temperature and strain[J]. Proceedings of SPIE, 7004, 70043H(2008).

    [29] Rao Y J, Ran Z L. Optic fiber sensors fabricated by laser-micromachining[J]. Optical Fiber Technology, 19, 808-821(2013).

    [30] Ran Z L, Liu S, Liu Q et al. Novel high-temperature fiber-optic pressure sensor based on etched PCF F-P interferometer micromachined by a 157-nm laser[J]. IEEE Sensors Journal, 15, 3955-3958(2015).

    [31] Liu Y, Qu S L. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing[J]. Applied Optics, 53, 469-474(2014).

    [32] Liu Y, Li M, Zhao P J et al. High sensitive temperature sensor based on a polymer waveguide integrated in an optical fibre micro-cavity[J]. Journal of Optics, 20, 015801(2018).

    [33] Li M, Liu Y, Gao R X et al. Ultracompact fiber sensor tip based on liquid polymer-filled Fabry-Perot cavity with high temperature sensitivity[J]. Sensors and Actuators B: Chemical, 233, 496-501(2016).

    [34] Cao K J, Liu Y, Qu S L. Compact fiber biocompatible temperature sensor based on a hermetically-sealed liquid-filling structure[J]. Optics Express, 25, 29597-29604(2017).

    [35] Wallace J. Femtosecond laser carves refractive-index-sensing F-P cavity in optical fiber[J]. Laser Focus World, 50, 11-20(2014).

    [36] Wallace J. Technology review: top 20 technologies for 2014 cover the range from basic R&D to new apps[J]. Laser Focus World, 50, 25-36(2014).

    [37] Mao G P, Sun B, Yuan T T et al. Fabrication of fiber Bragg gratings in embedded-core hollow optical fiber[J]. Proceedings of SPIE, 9655, 96552Z(2015).

    [38] Xu X Z, He J, Liao C R et al. Sapphire fiber Bragg gratings inscribed with a femtosecond laser line-by-line scanning technique[J]. Optics Letters, 43, 4562-4565(2018).

    [39] Wang Q H, Wang D, Zhang H. Fiber Bragg grating with a waveguide fabricated in no-core fiber and multimode fiber[J]. Optics Letters, 44, 2693-2696(2019).

    [40] Wolf A A, Dostovalov A V, Bronnikov K et al. Arrays of fiber Bragg gratings selectively inscribed in different cores of 7-core spun optical fiber by IR femtosecond laser pulses[J]. Optics Express, 27, 13978-13990(2019).

    [41] Liu X Y, Wang Y P, Li Z L et al. Low short-wavelength loss fiber Bragg gratings inscribed in a small-core fiber by femtosecond laser point-by-point technology[J]. Optics Letters, 44, 5121-5124(2019).

    [42] Dai Y, Wu G R, Lin X et al. Femtosecond laser induced rotated 3D self-organized nanograting in fused silica[J]. Optics Express, 20, 18072-18078(2012).

    [43] Ma Y C, Wang L, Guan K M et al. Silicon-based suspended structure fabricated by femtosecond laser direct writing and wet etching[J]. IEEE Photonics Technology Letters, 28, 1605-1608(2016).

    [44] Liu X Q, Yu L, Chen Q D et al. Mask-free construction of three-dimensional silicon structures by dry etching assisted gray-scale femtosecond laser direct writing[J]. Applied Physics Letters, 110, 091602(2017).

    [45] Grenier J R. FernandesL A, Herman P R. Femtosecond laser writing of optical edge filters in fused silica optical waveguides[J]. Optics Express, 21, 4493-4502(2013).

    [46] Pospiech M, Emons M, Steinmann A et al. Double waveguide couplers produced by simultaneous femtosecond writing[J]. Optics Express, 17, 3555-3563(2009).

    [47] Riesen N, Gross S, Love J D et al. Femtosecond direct-written integrated mode couplers[J]. Optics Express, 22, 29855-29861(2014).

    [48] Liu X, Qu S, Tan Y et al. Buried channel waveguides in neodymium-doped KGd(WO4)2 fabricated by low-repetition-rate femtosecond laser writing[J]. Applied Physics B, 103, 145-149(2011).

    [49] Liu X Y, Qu S L, Tan Y et al. Preservation of fluorescence and Raman gain in the buried channel waveguides in neodymium-doped KGd(WO4)2(Nd∶KGW) by femtosecond laser writing[J]. Applied Optics, 50, 930-934(2011).

    [50] Li W, Wang D. Femtosecond laser inscribed straight waveguide in no-core fiber for in-line Mach-Zehnder interferometer construction[J]. Optics Letters, 43, 3405-3408(2018).

    [51] Liu Y, Qu S L. Femtosecond laser pulses induced ultra-long-period fiber gratings for simultaneous measurement of high temperature and refractive index[J]. Optik, 124, 1303-1306(2013).

    [52] Deng J, Wang D N. Construction of cascaded Fabry-Perot interferometers by four in-fiber mirrors for high-temperature sensing[J]. Optics Letters, 44, 1289-1292(2019).

    [53] Wang Q H, Zhang H, Wang D N. Cascaded multiple Fabry-Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing[J]. Optics Letters, 44, 5145-5148(2019).

    [54] Kaiser W. Garrett C G B. Two-photon excitation in CaF2∶Eu 2+[J]. Physical Review Letters, 7, 229-231(1961).

    [55] Kawata S[J]. Sun H B. Two-photon photopolymerization as a tool for making micro-devices. Applied Surface Science, 208/209, 153-158(2003).

    [56] Li M, Liu Y, Zhao X L et al. Miniature-shaped polymer fiber tip for simultaneous measurement of the liquid refractive index and temperature with high sensitivities[J]. Journal of Optics, 17, 105701(2015).

    [57] Li M, Liu Y, Zhao X L et al. High sensitivity fiber acoustic sensor tip working at 1550 nm fabricated by two-photon polymerization technique[J]. Sensors and Actuators A: Physical, 260, 29-34(2017).

    [58] Wang J, Lin C P, Liao C R et al. Bragg resonance in microfiber realized by two-photon polymerization[J]. Optics Express, 26, 3732-3737(2018).

    [59] Lin C P, Liao C R, Wang J et al. Fiber surface Bragg grating waveguide for refractive index measurements[J]. Optics Letters, 42, 1684-1687(2017).

    [60] Li C, Liao C R, Wang J et al. Femtosecond laser microprinting of a polymer fiber Bragg grating for high-sensitivity temperature measurements[J]. Optics Letters, 43, 3409-3412(2018).

    [61] Zwaan E, le Gac S, Tsuji K et al. Controlled cavitation in microfluidic systems[J]. Physical Review Letters, 98, 254501(2007).

    [62] Dijkink R, Ohl C D. Laser-induced cavitation based micropump[J]. Lab on a Chip, 8, 1676-1681(2008).

    [63] Noack J, Hammer D X, Noojin G D et al. Influence of pulse duration on mechanical effects after laser-induced breakdown in water[J]. Journal of Applied Physics, 83, 7488-7495(1998).

    [64] Vogel A, Linz N, Freidank S et al. Femtosecond-laser-induced nanocavitation in water: implications for optical breakdown threshold and cell surgery[J]. Physical Review Letters, 100, 038102(2008).

    [65] Akhatov I S, Lindau O, Topolnikov A S et al. Collapse and rebound of a laser-induced cavitation bubble[J]. Physics of Fluids, 13, 2805-2819(2001).

    [66] Li Y, Itoh K, Watanabe W et al. Three-dimensionalhole drilling of silica glass from the rear surface with femtosecond laser pulses[J]. Optics Letters, 26, 1912-1914(2001).

    [67] An R, Li Y, Dou Y P et al. Laser micro-hole drilling of soda-lime glass with femtosecond pulses[J]. Chinese Physics Letters, 21, 2465-2468(2004).

    [68] Hwang D J, Choi T Y, Grigoropoulos C P. Liquid-assisted femtosecond laser drilling of straight and three-dimensional microchannels in glass[J]. Applied Physics A, 79, 605-612(2004).

    [69] An R, Li Y, Dou Y P et al. Simultaneous multi-microhole drilling of soda-lime glass by water-assisted ablation with femtosecond laser pulses[J]. Optics Express, 13, 1855-1859(2005).

    [70] Li C X, Shi X, Si J H et al. Fabrication of three-dimensional microfluidic channels in glass by femtosecond pulses[J]. Optics Communications, 282, 657-660(2009).

    [71] Li Y, Qu S L. Femtosecond laser-induced breakdown in distilled water for fabricating the helical microchannels array[J]. Optics Letters, 36, 4236-4238(2011).

    [72] Li Y, Qu S L, Guo Z Y. Fabrication of microfluidic devices in silica glass by water-assisted ablation with femtosecond laser pulses[J]. Journal of Micromechanics and Microengineering, 21, 075008(2011).

    [73] Li Y, Qu S L. Water-assisted femtosecond laser ablation for fabricating three-dimensional microfluidic chips[J]. Current Applied Physics, 13, 1292-1295(2013).

    [74] Liu Y, Qu S L, Li Y. Liquid refractive index sensor with three-cascaded microchannels in single-mode fiber fabricated by femtosecond laser-induced water breakdown[J]. Applied Physics B, 110, 585-589(2013).

    [75] Liu Y, Qu S L, Li Y. Single microchannel high-temperature fiber sensor by femtosecond laser-induced water breakdown[J]. Optics Letters, 38, 335-337(2013).

    [76] Liu Y, Qu S L. H-type microchannel fiber humidity sensor by femtosecond laser-induced water breakdown[J]. Journal of Modern Optics, 61, 1578-1581(2014).

    [77] Liu Y, Li M, Sun H H et al. Ultrasensitive liquid refractometer based on a Mach-Zehnder micro-cavity in optical fibre fabricated by femtosecond laser-induced water breakdown[J]. Journal of Modern Optics, 63, 2285-2290(2016).

    [78] Liu Y, Wu G Q, Gao R X et al. High-quality Mach-Zehnder interferometer based on a microcavity in single-multi-single mode fiber structure for refractive index sensing[J]. Applied Optics, 56, 847-853(2017).

    Jinjian Li, Yi Liu, Shiliang Qu. Research Progress on Optical Fiber Functional Devices Fabricated by Femtosecond Laser Micro-Nano Processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111402
    Download Citation