• Acta Optica Sinica
  • Vol. 44, Issue 15, 1513032 (2024)
Xinhai Zou1, Junfeng Zhu1, Chao Jing1, Zhihui Li1,2..., Naidi Cui2, Junbo Feng2, Yali Zhang1, Zhiyao Zhang1, Yong Liu1, Shangjian Zhang1,* and Ninghua Zhu3|Show fewer author(s)
Author Affiliations
  • 1School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan , China
  • 2United Microelectronics Center, Chongqing 400031, China
  • 3Xiongan Institute of Innovation, Baoding 071899, Hebei , China
  • show less
    DOI: 10.3788/AOS240856 Cite this Article Set citation alerts
    Xinhai Zou, Junfeng Zhu, Chao Jing, Zhihui Li, Naidi Cui, Junbo Feng, Yali Zhang, Zhiyao Zhang, Yong Liu, Shangjian Zhang, Ninghua Zhu. On-Wafer and In-Line Measurement of Optoelectronic Integrated Chips Based on Photonic Sampling (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513032 Copy Citation Text show less
    References

    [1] Kikuchi K. Fundamentals of coherent optical fiber communications[J]. Journal of Lightwave Technology, 34, 157-179(2016).

    [2] Rizzo A, Novick A, Gopal V et al. Massively scalable Kerr comb-driven silicon photonic link[J]. Nature Photonics, 17, 781-790(2023).

    [3] Wang M, Qiao L L, Fang Z W et al. Active lithium niobate photonic integration based on ultrafast laser lithography[J]. Acta Optica Sinica, 43, 1623014(2023).

    [4] Ranno L, Gupta P, Gradkowski K et al. Integrated photonics packaging: challenges and opportunities[J]. ACS Photonics, 9, 3467-3485(2022).

    [5] Shekhar S, Bogaerts W, Chrostowski L et al. Roadmapping the next generation of silicon photonics[J]. Nature Communications, 15, 751(2024).

    [6] TechnologiesKeysight. On-wafer testing of opto-electronic components[EB/OL]. https:∥literature.cdn.keysight.com/litweb/pdf/5989-9136CHCN.pdf?id=1485011

    [7] Cao L Q, Hou F Z, Wang Q D et al. Development and opportunity of advanced packaging technology[J]. Science and Technology Foresight, 1, 101-114(2022).

    [8] Li Q, Melde K L. The impact of on-wafer calibration method on the measured results of coplanar waveguide circuits[J]. IEEE Transactions on Advanced Packaging, 33, 285-292(2010).

    [9] Sievert B, Svejda J T, Erni D et al. Spherical mm-wave/THz antenna measurement system[J]. IEEE Access, 8, 89680-89691(2020).

    [10] Xie L L, Bauwens M F, Nadri S et al. Electronic calibration for submillimeter-wave on-wafer scattering parameter measurements using Schottky diodes[J]. IEEE Transactions on Terahertz Science and Technology, 10, 583-592(2020).

    [11] West J T, Kurlej A, Wynn A et al. Wafer-scale characterization of a superconductor integrated circuit fabrication process, using a cryogenic wafer prober[J]. IEEE Transactions on Applied Superconductivity, 32, 9500712(2022).

    [12] Ivanov A. From (integrated) circuits to systems of systems on chip in five decades: how did and will (IC) test technology keep up?[C], 1542-1543(2007).

    [13] Scarselli E F, Perilli L, Perugini L et al. A 40 nm CMOS I/O pad design with embedded capacitive coupling receiver for non-contact wafer probe test[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 62, 1737-1746(2015).

    [14] Grillanda S, Carminati M, Morichetti F et al. Non-invasive monitoring and control in silicon photonics using CMOS integrated electronics[J]. Optica, 1, 129-136(2014).

    [15] Annoni A, Guglielmi E, Carminati M et al. Unscrambling light-automatically undoing strong mixing between modes[J]. Light: Science & Applications, 6, e17110(2017).

    [16] Zhu H K, Goi K, Ogawa K. All-silicon waveguide photodetection for low-bias power monitoring and 20-km 28-Gb/s NRZ-OOK signal transmission[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 4400207(2018).

    [17] Wang X X, Korzh B A, Shaw M D et al. Full-speed testing of silicon photonic electro-optic modulators from picowatt-level scattered light[C], Th4A.7-12(2020).

    [18] Huang Q K, Yu H, Zhang Q et al. Thermally enhanced responsivity in an all-silicon optical power monitor based on defect-mediated absorption[J]. Photonics Research, 9, 2205-2213(2021).

    [19] Zhang Y F, Zhang Q H, Ríos C et al. Transient tap couplers for wafer-level photonic testing based on optical phase change materials[J]. ACS Photonics, 8, 1903-1908(2021).

    [20] Ochiai T, Akazawa T, Miyatake Y et al. Ultrahigh-responsivity waveguide-coupled optical power monitor for Si photonic circuits operating at near-infrared wavelengths[J]. Nature Communications, 13, 7443(2022).

    [21] Shi Y Q, Yan L S, Willner A E. High-speed electrooptic modulator characterization using optical spectrum analysis[J]. Journal of Lightwave Technology, 21, 2358-2367(2003).

    [22] Aboketaf A, Hedges C, Dhurgude V et al. Towards fully automated testing and characterization for photonic compact modeling on 300-mm wafer platform[C], 6-10(2021).

    [23] Hale P D, Williams D F. Calibrated measurement of optoelectronic frequency response[J]. IEEE Transactions on Microwave Theory and Techniques, 51, 1422-1429(2003).

    [24] Lam A K M, Chrostowski L, Faraji B et al. Modified optical heterodyne down-conversion system for measuring frequency responses of wideband wavelength-sensitive electrooptical devices[J]. IEEE Photonics Technology Letters, 18, 2183-2185(2006).

    [25] Dennis T, Hale P D. High-accuracy photoreceiver frequency response measurements at 1.55 µm by use of a heterodyne phase-locked loop[J]. Optics Express, 19, 20103-20114(2011).

    [26] Wu X M, Man J W, Xie L et al. Novel method for frequency response measurement of optoelectronic devices[J]. IEEE Photonics Technology Letters, 24, 575-577(2012).

    [27] Inagaki K, Kawanishi T, Izutsu M. Optoelectronic frequency response measurement of photodiodes by using high-extinction ratio optical modulator[J]. IEICE Electronics Express, 9, 220-226(2012).

    [28] Ye Q Y, Yang C, Chong Y H. Measuring the frequency response of photodiode using phase-modulated interferometric detection[J]. IEEE Photonics Technology Letters, 26, 29-32(2014).

    [29] Zhang S J, Wang H, Zou X H et al. Optical frequency-detuned heterodyne for self-referenced measurement of photodetectors[J]. IEEE Photonics Technology Letters, 27, 1014-1017(2015).

    [30] Wang H, Zhang S J, Zou X H et al. Two-tone intensity-modulated optical stimulus for self-referencing microwave characterization of high-speed photodetectors[J]. Optics Communications, 373, 110-113(2016).

    [31] Xue M, Lü M H, Wang Q et al. Ultrahigh-resolution optoelectronic vector analysis utilizing photonics-based frequency up- and down-conversions[J]. Journal of Lightwave Technology, 38, 3859-3865(2020).

    [32] Zhang S J, Zhang C, Wang H et al. On-wafer probing-kit for RF characterization of silicon photonic integrated transceivers[J]. Optics Express, 25, 13340-13350(2017).

    [33] Wang M K, Zhang S J, He Y T et al. Self-referenced frequency response measurement of high-speed photodetectors through segmental up-conversion based on low-speed photonic sampling[J]. Optics Express, 27, 38250-38258(2019).

    [34] Wang M K, Zhang S J, Xu Y et al. Frequency response measurement of high-speed photodiodes based on a photonic sampling of an envelope-modulated microwave subcarrier[J]. Optics Express, 29, 9836-9845(2021).

    [35] Ma Y X, Zhang Z Y, Zhang S J et al. Self-calibrating microwave characterization of broadband Mach-Zehnder electro-optic modulator employing low-speed photonic down-conversion sampling and low-frequency detection[J]. Journal of Lightwave Technology, 37, 2668-2674(2019).

    [36] Zhang Y J, Ma Y X, Zhang Z Y et al. Frequency response measurement of high-speed electro-optic phase modulators via a single scan based on low-speed photonic sampling and low-frequency detection[J]. Optics Express, 27, 32370-32377(2019).

    [37] Suh M G, Yang Q F, Yang K Y et al. Microresonator soliton dual-comb spectroscopy[J]. Science, 354, 600-603(2016).

    [38] Marin-Palomo P, Kemal J N, Karpov M et al. Microresonator-based solitons for massively parallel coherent optical communications[J]. Nature, 546, 274-279(2017).

    [39] Trocha P, Karpov M, Ganin D et al. Ultrafast optical ranging using microresonator soliton frequency combs[J]. Science, 359, 887-891(2018).

    [40] Suh M G, Yi X, Lai Y H et al. Searching for exoplanets using a microresonator astrocomb[J]. Nature Photonics, 13, 25-30(2019).

    [41] Chen Z Y, Wang Y L, Liu Y et al. Two-port calibration of test fixtures with different test ports[J]. Microwave and Optical Technology Letters, 35, 299-302(2002).

    [42] He Y T, Xu Y, Zou X H et al. High-frequency characterization of electro-optic modulation chips based on photonic down-conversion sampling and microwave fixture de-embedding[J]. Optics Express, 30, 40337-40346(2022).

    Xinhai Zou, Junfeng Zhu, Chao Jing, Zhihui Li, Naidi Cui, Junbo Feng, Yali Zhang, Zhiyao Zhang, Yong Liu, Shangjian Zhang, Ninghua Zhu. On-Wafer and In-Line Measurement of Optoelectronic Integrated Chips Based on Photonic Sampling (Invited)[J]. Acta Optica Sinica, 2024, 44(15): 1513032
    Download Citation