• Journal of Semiconductors
  • Vol. 42, Issue 10, 101604 (2021)
Yiyi Zhu1、2, Qianpeng Zhang1、2, Lei Shu1、2, Daquan Zhang1、2, and Zhiyong Fan1、2、3
Author Affiliations
  • 1Department of Electronic & Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China
  • 2HKUST-Shenzhen Research Institute, Shenzhen 518057, China
  • 3Guangdong-Hong Kong-Macao Joint Laboratory for Intelligent Micro-Nano Optoelectronic Technology, HKUST, Hong Kong 999077, China
  • show less
    DOI: 10.1088/1674-4926/42/10/101604 Cite this Article
    Yiyi Zhu, Qianpeng Zhang, Lei Shu, Daquan Zhang, Zhiyong Fan. Recent progress of efficient flexible solar cells based on nanostructures[J]. Journal of Semiconductors, 2021, 42(10): 101604 Copy Citation Text show less
    References

    [1] A V Shah, R Platz, H Keppner. Thin-film silicon solar cells: A review and selected trends. Sol Energy Mater Sol Cells, 38, 501(1995).

    [2] Q F Lin, H T Huang, Y Jing et al. Flexible photovoltaic technologies. J Mater Chem C, 2, 1233(2014).

    [3] M B Schubert, J H Werner. Flexible solar cells for clothing. Mater Today, 9, 42(2006).

    [4] M L Brongersma, Y Cui, S Fan. Light management for photovoltaics using high-index nanostructures. Nat Mater, 13, 451(2014).

    [5] B Hua, Q F Lin, Q P Zhang et al. Efficient photon management with nanostructures for photovoltaics. Nanoscale, 5, 6627(2013).

    [6]

    [7] Q Zhang, D Zhang, L Gu et al. Three-dimensional perovskite nanophotonic wire array-based light-emitting diodes with significantly improved efficiency and stability. ACS Nano, 14, 1577(2020).

    [8] K Ramanathan, M A Contreras, C L Perkins et al. Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Prog Photovolt: Res Appl, 11, 225(2003).

    [9] B S Richards. Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: A review. Prog Photovolt: Res Appl, 12, 253(2004).

    [10] E Garnett, P D Yang. Light trapping in silicon nanowire solar cells. Nano Lett, 10, 1082(2010).

    [11] J Müller, B Rech, J Springer et al. TCO and light trapping in silicon thin film solar cells. Sol Energy, 77, 917(2004).

    [12] L Hu, G Chen. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett, 7, 3249(2007).

    [13] M D Kelzenberg, S W Boettcher, J A Petykiewicz et al. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat Mater, 9, 239(2010).

    [14] H C Chang, K Y Lai, Y A Dai et al. Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency. Energy Environ Sci, 4, 2863(2011).

    [15] S F Leung, M Yu, Q Lin et al. Efficient photon capturing with ordered three-dimensional nanowell arrays. Nano Lett, 12, 3682(2012).

    [16] Z Y Fan, D J Ruebusch, A A Rathore et al. Challenges and prospects of nanopillar-based solar cells. Nano Res, 2, 829(2009).

    [17] C Battaglia, C M Hsu, K Söderström et al. Light trapping in solar cells: Can periodic beat random. ACS Nano, 6, 2790(2012).

    [18] J Zhu, C M Hsu, Z F Yu et al. Nanodome solar cells with efficient light management and self-cleaning. Nano Lett, 10, 1979(2010).

    [19] J Grandidier, D M Callahan, J N Munday et al. Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres. Adv Mater, 23, 1272(2011).

    [20] Y Yao, J Yao, V K Narasimhan et al. Broadband light management using low-Q whispering gallery modes in spherical nanoshells. Nat Commun, 3, 664(2012).

    [21] X Zheng, Z Wei, H Chen et al. Designing nanobowl arrays of mesoporous TiO2 as an alternative electron transporting layer for carbon cathode-based perovskite solar cells. Nanoscale, 8, 6393(2016).

    [22] Y Y Zhu, Q P Zhang, M Kam et al. Vapor phase fabrication of three-dimensional arrayed BiI3 nanosheets for cost-effective solar cells. InfoMat, 2, 975(2020).

    [23] Y Li, F Qian, J Xiang et al. Nanowire electronic and optoelectronic devices. Mater Today, 9, 18(2006).

    [24] X Guo, Q L Liu, H J Tian et al. Optimization of broadband omnidirectional antireflection coatings for solar cells. J Semicond, 40, 032702(2019).

    [25] K H Tsui, Q F Lin, H Chou et al. Low-cost, flexible, and self-cleaning 3D nanocone anti-reflection films for high-efficiency photovoltaics. Adv Mater, 26, 2805(2014).

    [26] L Tang, K H Tsui, S F Leung et al. Large-scale, adhesive-free and omnidirectional 3D nanocone anti-reflection films for high performance photovoltaics. J Semicond, 40, 042601(2019).

    [27] M M Tavakoli, A Simchi, R Tavakoli et al. Organic halides and nanocone plastic structures enhance the energy conversion efficiency and self-cleaning ability of colloidal quantum dot photovoltaic devices. J Phys Chem C, 121, 9757(2017).

    [28] Z Y Fan, H Razavi, J W Do et al. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat Mater, 8, 648(2009).

    [29] K H Yu, J H Chen. Enhancing solar cell efficiencies through 1-D nanostructures. Nanoscale Res Lett, 4, 1(2008).

    [30] P You, G Q Tang, J P Cao et al. 2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Sci Appl, 10, 68(2021).

    [31] K X Wang, Z Yu, V Liu et al. Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. Nano Lett, 12, 1616(2012).

    [32]

    [33] D M Schaadt, B Feng, E T Yu. Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl Phys Lett, 86, 063106(2005).

    [34] S Pillai, K R Catchpole, T Trupke et al. Surface plasmon enhanced silicon solar cells. J Appl Phys, 101, 093105(2007).

    [35] F J Haug, T Söderström, O Cubero et al. Plasmonic absorption in textured silver back reflectors of thin film solar cells. J Appl Phys, 104, 064509(2008).

    [36] U W Paetzold, E Moulin, B E Pieters et al. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Opt Express, 19, 1219(2011).

    [37] M M Tavakoli, A Simchi, X L Mo et al. High-quality organohalide lead perovskite films fabricated by layer-by-layer alternating vacuum deposition for high efficiency photovoltaics. Mater Chem Front, 1, 1520(2017).

    [38] M M Tavakoli, K H Tsui, Q Zhang et al. Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano, 9, 10287(2015).

    [39] C Zhang, Y Song, M Wang et al. Efficient and flexible thin film amorphous silicon solar cells on nanotextured polymer substrate using Sol-gel based nanoimprinting method. Adv Funct Mater, 27, 1604720(2017).

    [40] H P Xiao, J Wang, H T Huang et al. Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer. Nano Energy, 11, 78(2015).

    [41] P You, Z K Liu, Q D Tai et al. Efficient semitransparent perovskite solar cells with graphene electrodes. Adv Mater, 27, 3632(2015).

    [42] L K Ono, S H Wang, Y Kato et al. Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method. Energy Environ Sci, 7, 3989(2014).

    [43] J W Jung, C C Chueh, A K Y Jen. High-performance semitransparent perovskite solar cells with 10% power conversion efficiency and 25% average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv Energy Mater, 5, 1500486(2015).

    [44] F Guo, H Azimi, Y Hou et al. High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. Nanoscale, 7, 1642(2015).

    [45] J H Heo, H J Han, M Lee et al. Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells. Energy Environ Sci, 8, 2922(2015).

    [46] Quiroz C O Ramírez, I Levchuk, C Bronnbauer et al. Pushing efficiency limits for semitransparent perovskite solar cells. J Mater Chem A, 3, 24071(2015).

    [47] H K Zhang, Y K Zhang, G Yang et al. Vacuum-free fabrication of high-performance semitransparent perovskite solar cells via e-glue assisted lamination process. Sci China Chem, 62, 875(2019).

    [48] Y K Zhang, Z W Wu, P Li et al. Fully solution-processed TCO-free semitransparent perovskite solar cells for tandem and flexible applications. Adv Energy Mater, 8, 1701569(2018).

    [49]

    [50] Y Y Zhu, L Shu, Q P Zhang et al. Moth eye-inspired highly efficient, robust, and neutral-colored semitransparent perovskite solar cells for building-integrated photovoltaics. EcoMat, 3, e12117(2021).

    [51] S F Leung, L L Gu, Q P Zhang et al. Roll-to-roll fabrication of large scale and regular arrays of three-dimensional nanospikes for high efficiency and flexible photovoltaics. Sci Rep, 4, 4243(2014).

    [52] S F Leung, K H Tsui, Q F Lin et al. Large scale, flexible and three-dimensional quasi-ordered aluminum nanospikes for thin film photovoltaics with omnidirectional light trapping and optimized electrical design. Energy Environ Sci, 7, 3611(2014).

    [53] E C Garnett, M L Brongersma, Y Cui et al. Nanowire solar cells. Annu Rev Mater Res, 41, 269(2011).

    [54] Z F Yu, A Raman, S H Fan. Fundamental limit of nanophotonic light trapping in solar cells. PNAS, 107, 17491(2010).

    [55] B M Kayes, H A Atwater, N S Lewis. Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. J Appl Phys, 97, 114302(2005).

    [56] D P Li, C Y Lan, A Manikandan et al. Ultra-fast photodetectors based on high-mobility indium gallium antimonide nanowires. Nat Commun, 10, 1664(2019).

    [57] S Conesa-Boj, A Li, S Koelling et al. Boosting hole mobility in coherently strained [110]-oriented Ge–Si core–shell nanowires. Nano Lett, 17, 2259(2017).

    [58] G Badawy, S Gazibegovic, F Borsoi et al. High mobility stemless InSb nanowires. Nano Lett, 19, 3575(2019).

    [59] A Wangperawong, S F Bent. Three-dimensional nanojunction device models for photovoltaics. Appl Phys Lett, 98, 233106(2011).

    [60] M G Deceglie, V E Ferry, A P Alivisatos et al. Design of nanostructured solar cells using coupled optical and electrical modeling. Nano Lett, 12, 2894(2012).

    [61] H Tsai, W Y Nie, J C Blancon et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature, 536, 312(2016).

    [62] Z W Xiao, W W Meng, J B Wang et al. Searching for promising new perovskite-based photovoltaic absorbers: The importance of electronic dimensionality. Mater Horiz, 4, 206(2017).

    [63] Y Zhou, S S Yang, X W Yin et al. Enhancing electron transport via graphene quantum dot/SnO2 composites for efficient and durable flexible perovskite photovoltaics. J Mater Chem A, 7, 1878(2019).

    [64] Y Zhou, X Li, H Lin. To be higher and stronger—metal oxide electron transport materials for perovskite solar cells. Small, 16, 1902579(2020).

    [65] B Yang, Y Xiong, K Ma et al. Recent advances in wearable textile-based triboelectric generator systems for energy harvesting from human motion. EcoMat, 2, e12054(2020).

    [66] A W Blakers, T Armour. Flexible silicon solar cells. Sol Energy Mater Sol Cells, 93, 1440(2009).

    [67]

    [68] K Fukuda, K Yu, T Someya. The future of flexible organic solar cells. Adv Energy Mater, 10, 2000765(2020).

    [69] Y Zhou, H Zhong, J H Han et al. Synergistic effect of charge separation and defect passivation using zinc porphyrin dye incorporation for efficient and stable perovskite solar cells. J Mater Chem A, 7, 26334(2019).

    [70] W X Lan, J L Gu, S W Wu et al. Toward improved stability of nonfullerene organic solar cells: Impact of interlayer and built-in potential. EcoMat, in press(2021).

    [71] W L Rance, J M Burst, D M Meysing et al. 14%-efficient flexible CdTe solar cells on ultra-thin glass substrates. Appl Phys Lett, 104, 143903(2014).

    [72] M M Tavakoli, Q F Lin, S F Leung et al. Efficient, flexible and mechanically robust perovskite solar cells on inverted nanocone plastic substrates. Nanoscale, 8, 4276(2016).

    [73] Q F Lin, L F Lu, M M Tavakoli et al. High performance thin film solar cells on plastic substrates with nanostructure-enhanced flexibility. Nano Energy, 22, 539(2016).

    [74] Y Y Lin, Z Xu, D L Yu et al. Dual-layer nanostructured flexible thin-film amorphous silicon solar cells with enhanced light harvesting and photoelectric conversion efficiency. ACS Appl Mater Interfaces, 8, 10929(2016).

    [75] J Li, X Guan, C Wang et al. Synthesis of 2D layered BiI3 nanoplates, BiI3/WSe2 van der waals heterostructures and their electronic, optoelectronic properties. Small, 13, 1701034(2017).

    Yiyi Zhu, Qianpeng Zhang, Lei Shu, Daquan Zhang, Zhiyong Fan. Recent progress of efficient flexible solar cells based on nanostructures[J]. Journal of Semiconductors, 2021, 42(10): 101604
    Download Citation