• High Power Laser and Particle Beams
  • Vol. 34, Issue 9, 095018 (2022)
Huiru Sha1、2, Longfei Xiao1、2、*, Chongbiao Luan3, Zhuoyun Feng1、2、3, Yangfan Li1、2, Xun Sun1、2, Xiaobo Hu1、2, and Xiangang Xu1、2
Author Affiliations
  • 1Institute of Noval Semiconduction, Shandong University, Jinan 250100, China
  • 2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 3Institute of Fluid Physics, CAEP, Mianyang 621900, China
  • show less
    DOI: 10.11884/HPLPB202234.210579 Cite this Article
    Huiru Sha, Longfei Xiao, Chongbiao Luan, Zhuoyun Feng, Yangfan Li, Xun Sun, Xiaobo Hu, Xiangang Xu. Damage morphology of GaAs photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34(9): 095018 Copy Citation Text show less
    References

    [1] Shi Wei, Jiang Huan, Li Mengxia, et al. Investigation of electric field threshold of GaAs photoconductive semiconductor switch triggered by 1.6 μJ laser diode[J]. Applied Physics Letters, 104, 042108(2014).

    [2] Loubriel G M, Zutavern F J, Baca A G, et al. Photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 25, 124-130(1997).

    [3] Shi Wei, Yan Zhijin. Research progress on avalanche multiplication GaAs photoconductive terahertz emitter[J]. Acta Physica Sinica, 64, 228702(2015).

    [4] Liu Xiaorong, Li Song. The effect of photoconductive semiconductor materials in improving the resolution of femtosecond streak camera[J]. IOP Conference Series: Materials Science and Engineering, 772, 012060(2020).

    [5] Islam N E, Schamiloglu E, Fleddermann C B. Characterization of a semi-insulating GaAs photoconductive semiconductor switch for ultrawide band high power microwave applications[J]. Applied Physics Letters, 73, 1988-1990(1998).

    [6] Mar A, Bacon L D, Loubriel G M. Device technology investigation: subsystems packaging study: feasibility of PCSSbased pulser f highly ptable platfms[R]. S20022059, 2002: 20022059.

    [7] Glover S F, Zutavern F J, Swalby M E, et al. Pulsed- and DC-charged PCSS-based trigger generators[J]. IEEE Transactions on Plasma Science, 38, 2701-2707(2010).

    [8] Nunnally W C. Critical component requirements for compact pulse power system architectures[J]. IEEE Transactions on Plasma Science, 33, 1262-1267(2005).

    [9] Yan Chengfeng, Shi Erwei, Chen Zhizhan, . Super fast and high power SiC photoconductive semiconductor switches[J]. Journal of Inorganic Materials, 23, 425-428(2008).

    [10] Tian Liqiang, Shi Wei, Feng Qingqing. Breakover mechanism of GaAs photoconductive switch triggering spark gap for high power applications[J]. Journal of Applied Physics, 110, 094507(2011).

    [11] Wang Langning, Jia Yongsheng, Liu Jinliang. Photoconductive semiconductor switch-based triggering with 1 ns jitter for trigatron[J]. Matter and Radiation at Extremes, 3, 256-260(2018).

    [12] Mar A, Loubriel G M, Zutavern F J, et al. Doped contacts for high-longevity optically activated, high-gain GaAs photoconductive semiconductor switches[J]. IEEE Transactions on Plasma Science, 28, 1507-1511(2000).

    [13] Shi Wei, Ma Cheng, Li Mengxia. Research on the failure mechanism of high-power GaAs PCSS[J]. IEEE Transactions on Power Electronics, 30, 2427-2434(2015).

    [14] Liu Hongwei, Yuan Jianqiang, Liu Jinfeng, . Experimental investigation on lifetime of high power GaAs photoconductive semiconductor switch[J]. High Power Laser and Particle Beams, 22, 795-798(2010).

    [15] Sun Feixiang, He Xiaoxiong, Chang Runfa, . GaAs PCSS’s injuring mechanism[J]. Journal of Hefei University of Technology, 40, 497-501(2017).

    [16] Hjalmarson H P, Kambour K, Myles C W, et al. Continuum models f electrical breakdown in photoconductive semiconduct switches[C]16th IEEE International Pulsed Power Conference. 2007: 446450.

    [17] Kambour K, Hjalmarson H P, Zutavern F J, et al. Simulation of current filaments in photoconductive semiconduct switches[C]15th IEEE International Pulsed Power Conference. 2005: 814817.

    [18] Zhang Tongyi, Shi Shunxiang, Zhao Wei, . The effect of deep level impurity on the nonlinear performances of photoconductive semiconductor switches[J]. Acta Photonica Sinica, 31, 121-123(2003).

    [19] Brinkmann R P, Schoenbach K H, Mazzola M S, et al. Analysis of timedependent current transpt in an optically controlled Cucompensated GaAs switch[C]Proceedings of SPIE 1632, Optically Activated Switching II. 1992: 262273.

    [20] (Liu Hong, Ruan Chengli. Flow model in intrinsic gallium arsenide photoconductive switch[J]. Chinese Science Bulletin, 53, 2181-2185(2008).

    [21] Ma Cheng, Shi Wei, Li Mengxia, et al. Impact of current filaments on the material and output characteristics of GaAs Photoconductive Switches[J]. IEEE Transactions on Electron Device, 61, 2432-2436(2014).

    [22] Hu Long, Xu Ming, Li Xin, et al. Performance investigation of bulk photoconductive semiconductor switch based on reversely biased p+-i-n+ structure[J]. Transactions on Electron Devices, 67, 4963-4969(2020).

    [23] Ma Cheng, Shi Wei, Dong Chengang, et al. 998 multiplication rate of GaAs avalanche semiconductor switch triggered by 0.567 nJ[J]. IEEE Access, 8, 116515-116519(2020).

    Huiru Sha, Longfei Xiao, Chongbiao Luan, Zhuoyun Feng, Yangfan Li, Xun Sun, Xiaobo Hu, Xiangang Xu. Damage morphology of GaAs photoconductive switch[J]. High Power Laser and Particle Beams, 2022, 34(9): 095018
    Download Citation