• Laser & Optoelectronics Progress
  • Vol. 57, Issue 21, 212302 (2020)
Xiao Pingping*, Wang Fei, and Deng Manlan
Author Affiliations
  • 宜春学院物理科学与工程技术学院电子信息工程系, 江西 宜春 336000
  • show less
    DOI: 10.3788/LOP57.212302 Cite this Article Set citation alerts
    Xiao Pingping, Wang Fei, Deng Manlan. Nanometer Gap Measurement Based on Metal-Cladding Waveguide Configurations[J]. Laser & Optoelectronics Progress, 2020, 57(21): 212302 Copy Citation Text show less
    References

    [1] Shan Y, Hu G H, Grilli M L et al. Measuring ultrathin metal coatings using SPR spectroscopic ellipsometry with a prism-dielectric-metal-liquid configuration[J]. Optics Express, 27, 7912-7921(2019). http://www.osapublishing.org/oe/abstract.cfm?uri=oe-27-6-7912

    [2] Liu Q G, Xie X, Qin Z R. Simulation of nano-metal film thickness measurement based on surface plasmon resonance effect[J]. Nanotechnology and Precision Engineering, 1, 16-22(2018). http://www.researchgate.net/publication/329943673_Simulation_of_Nano_Metal_Film_Thickness_Measurement_Based_on_Surface_Plasmon_Resonance_Effect

    [3] Xu L, Hong J, Wang W. Simulation analysis and experimental study on nanosecond laser cladding silicon nano film[J]. Chinese Journal of Lasers, 46, 0402008(2019).

    [4] Cao Y Y, Xie F, Zhang P D et al. Dual-beam super-resolution direct laser writing nanofabrication technology[J]. Opto-Electronic Engineering, 44, 1133-1145(2017).

    [5] Jiang M L, Zhang M S, Li X P et al. Research progress of super-resolution optical data storage[J]. Opto-Electronic Engineering, 46, 180649(2019).

    [6] Zhuang Q H, Wang S Q. Monitoring method of optical film thickness[J]. Laser & Optoelectronics Progress, 55, 103102(2018).

    [7] Sun W F, Hong R J, Tao C X et al. Pulsed-laser-modified plasmon properties of metal nanofilms[J]. Chinese Journal of Lasers, 47, 0103001(2020).

    [8] Fursina A, Lee S. Sofin R G S, et al. Nanogaps with very large aspect ratios for electrical measurements[J]. Applied Physics Letters, 92, 113102(2008).

    [9] Kim J G, Lee T J, Park N C et al. SAW-based capacitive sensor with hemispherical electrode for nano-precision gap measurement[J]. Sensors and Actuators A, 163, 54-60(2010).

    [10] Keathley P D, Hastings J T. Nano-gap-enhanced surface plasmon resonance sensors[J]. Plasmonics, 7, 59-69(2012).

    [11] Tan S Y, Zhang J, Bond A M et al. Impact of adsorption on scanning electrochemical microscopy voltammetry and implications for nanogap measurements[J]. Analytical Chemistry, 88, 3272-3280(2016).

    [12] Moon E E, Chen L, Everett P N et al. Nanometer gap measurement and verification via the chirped-Talbot effect[J]. Journal of Vacuum Science & Technology B, 22, 3378-3381(2004).

    [13] Wu P, Wu M, Wu C. A nanogap measuring method beyond optical diffraction limit[J]. Journal of Applied Physics, 102, 123111(2007).

    [14] Suzuki M, Fukuda M[J]. Tsuyuzaki H. New gap detection method using two lasers optical heterodyne interference for X-ray lithography. Microelectronic Engineering, 41/42, 291-295(1998).

    [15] Shi K, Su J H, Qi Y. Method of thin film thickness measurement based on laser heterodyne interferometry[J]. Journal of Applied Optics, 40, 473-477(2019).

    [16] Wu Y G, Wu H Y. -04-02[P]. Lü G. The measurement method of nanometer gap based on non-polarized tunable guided mode resonance filter system:CN102364360B.(2014).

    [17] Xiao P P, Wang X P, Sun J J et al. Biosensor based on hollow-core metal-cladding waveguide[J]. Sensors and Actuators A, 183, 22-27(2012).

    [18] Xiao P P, Wang X P, Sun J J et al. Simultaneous measurement of electro-optical and converse-piezoelectric coefficients of PMN-PT ceramics[J]. Optics Express, 20, 13833-13840(2012).

    [19] Amoosoltani N, Zarifkar A, Farmani A. Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor[J]. Journal of Computational Electronics, 18, 1354-1364(2019).

    [20] Cao Z Q[M]. Guidewave optics(2007).

    [21] Cao Z Q, Yin C. Advances in one-dimensional wave mechanics[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 23-24(2014).

    Xiao Pingping, Wang Fei, Deng Manlan. Nanometer Gap Measurement Based on Metal-Cladding Waveguide Configurations[J]. Laser & Optoelectronics Progress, 2020, 57(21): 212302
    Download Citation