• Journal of Semiconductors
  • Vol. 43, Issue 10, 101301 (2022)
Yan Wang1, Tongtong Liu1, Jiangyi Liu1, Chuanbo Li1, Zhuo Chen2、*, and Shuhui Bo1、**
Author Affiliations
  • 1Optoelectronics Research Centre, School of Science, Minzu University of China, Beijing 100081, China
  • 2Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • show less
    DOI: 10.1088/1674-4926/43/10/101301 Cite this Article
    Yan Wang, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, Shuhui Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. Journal of Semiconductors, 2022, 43(10): 101301 Copy Citation Text show less
    References

    [1] W Heni, Y Kutuvantavida, C Haffner et al. Silicon-organic and plasmonic-organic hybrid photonics. ACS Photonics, 4, 1576(2017).

    [2] I C Benea-Chelmus, T Q Zhu, F F Settembrini et al. Three-dimensional phase modulator at telecom wavelength acting as a terahertz detector with an electro-optic bandwidth of 1.25 terahertz. ACS Photonics, 5, 1398(2018).

    [3] B H Robinson, L E Johnson, D L Elder et al. Optimization of plasmonic-organic hybrid electro-optics. J Lightwave Technol, 36, 5036(2018).

    [4] A Rahim, A Hermans, B Wohlfeil et al. Taking silicon photonics modulators to a higher performance level: State-of-the-art and a review of new technologies. Adv Photonics, 3, 024003(2021).

    [5] L R Dalton, B H Robinson, D L Elder et al. Hybrid electro-optics and chipscale integration of electronics and photonics. Proc SPIE, 10364(2017).

    [6] J Wang, Y Long. On-chip silicon photonic signaling and processing: A review. Sci Bull, 63, 1267(2018).

    [7] P Dong, Y K Chen, G H Duan et al. Silicon photonic devices and integrated circuits. Nanophotonics, 3, 215(2014).

    [8] Y H Dong, Y Zhang, J Shen et al. Silicon-integrated high-speed mode and polarization switch-and-selector. J Semicond, 43, 022301(2022).

    [9] L R Dalton, P A Sullivan, D H Bale. Electric field poled organic electro-optic materials: State of the art and future prospects. Chem Rev, 110, 25(2010).

    [10] L Alloatti, R Palmer, S Diebold et al. 100 GHz silicon–organic hybrid modulator. Light Sci Appl, 3, e173(2014).

    [11] A Melikyan, L Alloatti, A Muslija et al. High-speed plasmonic phase modulators. Nat Photonics, 8, 229(2014).

    [12] C Haffner, W Heni, Y Fedoryshyn et al. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nat Photonics, 9, 525(2015).

    [13] K Liang, C Wang, B Y Wu et al. Polymeric thermo-optic digital optical switches. Chin J Semicond, 27, 747(2006).

    [14] D P Liu, J Tang, Y Meng et al. Ultra-low Vpp and high-modulation-depth InP-based electro-optic microring modulator. J Semicond, 42, 082301(2021).

    [15] M B He, M Y Xu, Y X Ren et al. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat Photonics, 13, 359(2019).

    [16] S Yuan, C R Hu, A Pan et al. Photonic devices based on thin-film lithium niobate on insulator. J Semicond, 42, 041304(2021).

    [17] M Y Xu, X L Cai. Advances in integrated ultra-wideband electro-optic modulators. Opt Express, 30, 7253(2022).

    [18] Y H Yang, F G Liu, H R Wang et al. Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. J Mater Chem C, 3, 5297(2015).

    [19] H Zhang, Y X Tian, S H Bo et al. A study on regulating the conjugate position of NLO chromophores for reducing the dipole moment and enhancing the electro-optic activities of organic materials. J Mater Chem C, 8, 1380(2020).

    [20] Z A Li, H Kim, S H Chi et al. Effects of counterions with multiple charges on the linear and nonlinear optical properties of polymethine salts. Chem Mater, 28, 3115(2016).

    [21] F G Liu, H J Xu, H Zhang et al. Synthesis of julolidine-containing nonlinear optical chromophores: Achieving excellent electro-optic activity by optimizing the bridges and acceptors. Dyes Pigments, 134, 358(2016).

    [22] H Zhang, F Y Huo, F G Liu et al. Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Adv, 6, 99743(2016).

    [23] F G Liu, H Zhang, H Y Xiao et al. Structure-function relationship exploration for enhanced electro-optic activity in isophorone-based organic NLO chromophores. Dyes Pigments, 157, 55(2018).

    [24] C L Hu, F G Liu, H Zhang et al. Synthesis of novel nonlinear optical chromophores: Achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. J Mater Chem C, 3, 11595(2015).

    [25] F G Liu, M L Zhang, H Y Xiao et al. Auxiliary donor for tetrahydroquinoline-containing nonlinear optical chromophores: Enhanced electro-optical activity and thermal stability. J Mater Chem C, 3, 9283(2015).

    [26] J Y Wu, Z Li, J D Luo et al. High-performance organic second- and third-order nonlinear optical materials for ultrafast information processing. J Mater Chem C, 8, 15009(2020).

    [27] H J Xu, F G Liu, D L Elder et al. Ultrahigh electro-optic coefficients, high index of refraction, and long-term stability from Diels-alder cross-linkable binary molecular glasses. Chem Mater, 32, 1408(2020).

    [28] A Honardoost, R Safian, M Teng et al. Ultralow-power polymer electro-optic integrated modulators. J Semicond, 40, 070401(2019).

    [29] J D Witmer, T P McKenna, P Arrangoiz-Arriola et al. A silicon-organic hybrid platform for quantum microwave-to-optical transduction. Quantum Sci Technol, 5, 034004(2020).

    [30] C Weimann, P C Schindler, R Palmer et al. Silicon-organic hybrid (SOH) frequency comb sources for terabit/s data transmission. Opt Express, 22, 3629(2014).

    [31] S Koeber, R Palmer, M Lauermann et al. Femtojoule electro-optic modulation using a silicon–organic hybrid device. Light Sci Appl, 4, e255(2015).

    [32] M Lauermann, S Wolf, P C Schindler et al. 40 GBd 16QAM signaling at 160 gb/s in a silicon-organic hybrid modulator. J Lightwave Technol, 33, 1210(2015).

    [33] C Koos, J Leuthold, W Freude et al. Silicon-organic hybrid (SOH) and plasmonic-organic hybrid (POH) integration. J Lightwave Technol, 34, 256(2016).

    [34] C Kieninger, Y Kutuvantavida, D L Elder et al. Ultra-high electro-optic activity demonstrated in a silicon-organic hybrid modulator. Optica, 5, 739(2018).

    [35] C Kieninger, Y Kutuvantavida, H Miura et al. Demonstration of long-term thermally stable silicon-organic hybrid modulators at 85 °C. Opt Express, 26, 27955(2018).

    [36] S Wolf, H Zwickel, W Hartmann et al. Silicon-organic hybrid (SOH) Mach-Zehnder modulators for 100 Gbit/s on-off keying. Sci Rep, 8, 2598(2018).

    [37] C Kieninger, C Füllner, H Zwickel et al. SOH Mach-Zehnder modulators for 100 GBd PAM4 signaling with sub-1 dB phase-shifter loss. 2020 Opt Fiber Commun Conf Exhib OFC, 1(2020).

    [38] M Ayata, Y Fedoryshyn, W Heni et al. High-speed plasmonic modulator in a single metal layer. Science, 358, 630(2017).

    [39] C Hoessbacher, A Josten, B Baeuerle et al. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Opt Express, 25, 1762(2017).

    [40] C Haffner, D Chelladurai, Y Fedoryshyn et al. Low-loss plasmon-assisted electro-optic modulator. Nature, 556, 483(2018).

    [41] M Burla, C Hoessbacher, W Heni et al. 500 GHz plasmonic Mach-Zehnder modulator enabling sub-THz microwave photonics. APL Photonics, 4, 056106(2019).

    [42] W Heni, Y Fedoryshyn, B Baeuerle et al. Plasmonic IQ modulators with attojoule per bit electrical energy consumption. Nat Commun, 10, 1694(2019).

    [43] B Baeuerle, C Hoessbacher, W Heni et al. 100 GBd IM/DD transmission over 14 km SMF in the C-band enabled by a plasmonic SSB MZM. Opt Express, 28, 8601(2020).

    [44] U Koch, C Uhl, H Hettrich et al. A monolithic bipolar CMOS electronic-plasmonic high-speed transmitter. Nat Electron, 3, 338(2020).

    [45] L R Dalton. Theory-inspired development of organic electro-optic materials. Thin Solid Films, 518, 428(2009).

    [46] P A Sullivan, H Rommel, Y Liao et al. Theory-guided design and synthesis of multichromophore dendrimers: An analysis of the electro-optic effect. J Am Chem Soc, 129, 7523(2007).

    [47] J L Liu, S H Bo, X H Liu et al. Enhanced poling efficiency in rigid-flexible dendritic nonlinear optical chromophores. J Incl Phenom Macrocycl Chem, 68, 253(2010).

    [48] Z A Li, W B Wu, Q Q Li et al. High-generation second-order nonlinear optical (NLO) dendrimers: Convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew Chem Int Ed Engl, 49, 2763(2010).

    [49] W B Wu, J G Qin, Z Li. New design strategies for second-order nonlinear optical polymers and dendrimers. Polymer, 54, 4351(2013).

    [50] S R Hammond, J Sinness, S Dubbury et al. Molecular engineering of nanoscale order in organic electro-optic glasses. J Mater Chem, 22, 6752(2012).

    [51] Z Chen, A R Zhang, H Y Xiao et al. Tailoring the chemical structures and nonliear optical properties of julolidinyl-based chromophores by molecular engineering. Dyes Pigments, 173, 107876(2020).

    [52] J Y Wu, S H Bo, J L Liu et al. Synthesis of novel nonlinear optical chromophore to achieve ultrahigh electro-optic activity. Chem Commun, 48, 9637(2012).

    [53] X H Zhou, J D Luo, J A Davies et al. Push-pull tetraene chromophores derived from dialkylaminophenyl, tetrahydroquinolinyl and julolidinyl moieties: Optimization of second-order optical nonlinearity by fine-tuning the strength of electron-donating groups. J Mater Chem, 22, 16390(2012).

    [54] S H Bo, Y Li, T T Liu et al. Systematic study on the optimization of a bis(N, N-diethyl)aniline based NLO chromophorevia a stronger electron acceptor, extended π-conjugation and isolation groups. J Mater Chem C, 10, 3343(2022).

    [55] D L Elder, S J Benight, J S Song et al. Matrix-assisted poling of monolithic bridge-disubstituted organic NLO chromophores. Chem Mater, 26, 872(2014).

    [56] W W Jin, P V Johnston, D L Elder et al. Structure-function relationship exploration for enhanced thermal stability and electro-optic activity in monolithic organic NLO chromophores. J Mater Chem C, 4, 3119(2016).

    [57] D L Elder, C Haffner, W Heni et al. Effect of rigid bridge-protection units, quadrupolar interactions, and blending in organic electro-optic chromophores. Chem Mater, 29, 6457(2017).

    [58] H Zhang, Y H Yang, H Y Xiao et al. Enhancement of electro-optic properties of bis(N, N-diethyl)aniline based second order nonlinear chromophores by introducing a stronger electron acceptor and modifying the π-bridge. J Mater Chem C, 5, 6704(2017).

    [59] A R Zhang, H Y Xiao, C C Peng et al. Microwave-assisted synthesis of novel julolidinyl-based nonlinear optical chromophores with enhanced electro-optic activity. RSC Adv, 4, 65088(2014).

    [60] S Ummethala, T Harter, K Koehnle et al. THz-to-optical conversion in wireless communications using an ultra-broadband plasmonic modulator. Nat Photonics, 13, 519(2019).

    [61] Y J Cheng, J D Luo, S Hau et al. Large electro-optic activity and enhanced thermal stability from diarylaminophenyl-containing high-β nonlinear optical chromophores. Chem Mater, 19, 1154(2007).

    [62] J A Davies, A Elangovan, P A Sullivan et al. Rational enhancement of second-order nonlinearity: Bis-(4-methoxyphenyl) hetero-aryl-amino donor-based chromophores: Design, synthesis, and electrooptic activity. J Am Chem Soc, 130, 10565(2008).

    [63] Y H Yang, H J Xu, F G Liu et al. Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. J Mater Chem C, 2, 5124(2014).

    [64] Y H Yang, J L Liu, M L Zhang et al. The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. J Mater Chem C, 3, 3913(2015).

    [65] Y H Yang, H R Wang, F G Liu et al. The synthesis of new double-donor chromophores with excellent electro-optic activity by introducing modified bridges. Phys Chem Chem Phys, 17, 5776(2015).

    [66] W W Jin, P V Johnston, D L Elder et al. Benzocyclobutene barrier layer for suppressing conductance in nonlinear optical devices during electric field poling. Appl Phys Lett, 104, 243304(2014).

    [67] S Huang, T D Kim, J D Luo et al. Highly efficient electro-optic polymers through improved poling using a thin TiO2-modified transparent electrode. Appl Phys Lett, 96, 243311(2010).

    [68] H J Xu, D L Elder, L E Johnson et al. Electro-optic activity in excess of 1000 pm V–1 achieved via theory-guided organic chromophore design. Adv Mater, 33, 2104174(2021).

    [69] H J Xu, D L Elder, L E Johnson et al. Design and synthesis of chromophores with enhanced electro-optic activities in both bulk and plasmonic-organic hybrid devices. Mater Horiz, 9, 261(2022).

    [70] J M Brosi, C Koos, L C Andreani et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt Express, 16, 4177(2008).

    [71] C Y Lin, X L Wang, S Chakravarty et al. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement. Appl Phys Lett, 97, 093304(2010).

    [72] X Y Zhang, A Hosseini, S Chakravarty et al. Wide optical spectrum range, subvolt, compact modulator based on an electro-optic polymer refilled silicon slot photonic crystal waveguide. Opt Lett, 38, 4931(2013).

    [73] X Y Zhang, C J Chung, A Hosseini et al. High performance optical modulator based on electro-optic polymer filled silicon slot photonic crystal waveguide. J Lightwave Technol, 34, 2941(2016).

    [74] L Alloatti, D Korn, R Palmer et al. 42.7 Gbit/s electro-optic modulator in silicon technology. Opt Express, 19, 11841(2011).

    [75] S Ummethala, J N Kemal, A S Alam et al. Hybrid electro-optic modulator combining silicon photonic slot waveguides with high-k radio-frequency slotlines. Optica, 8, 511(2021).

    [76] D H Park, V Yun, J Luo et al. EO polymer at cryogenic temperatures. Electron Lett, 52, 1703(2016).

    [77] G W Lu, J X Hong, F Qiu et al. High-temperature-resistant silicon-polymer hybrid modulator operating at up to 200 Gbit s−1 for energy-efficient datacentres and harsh-environment applications. Nat Commun, 11, 4224(2020).

    [78] Y H Zou, Y M Wang, X X Zhang et al. Optimal design and preparation of silicon-organic hybrid integrated electro-optic modulator. Opt Precision Eng, 28, 2138(2020).

    [79] D L Elder, L R Dalton. Organic electro-optics and optical rectification: From mesoscale to nanoscale hybrid devices and chip-scale integration of electronics and photonics. Ind Eng Chem Res, 61, 1207(2022).

    [80] W Heni, B Baeuerle, H Mardoyan et al. Ultra-high-speed 2: 1 digital selector and plasmonic modulator IM/DD transmitter operating at 222 GBaud for intra-datacenter applications. J Lightwave Technol, 38, 2734(2020).

    [81] C Wang, M Zhang, X Chen et al. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 562, 101(2018).

    [82] P O Weigel, J Zhao, K Fang et al. Bonded thin film lithium niobate modulator on a silicon photonics platform exceeding 100 GHz 3-dB electrical modulation bandwidth. Opt Express, 26, 23728(2018).

    [83] H Zwickel, J N Kemal, C Kieninger et al. Electrically packaged silicon-organic hybrid (SOH) I/Q-modulator for 64 GBd operation. Opt Express, 26, 34580(2018).

    Yan Wang, Tongtong Liu, Jiangyi Liu, Chuanbo Li, Zhuo Chen, Shuhui Bo. Organic electro-optic polymer materials and organic-based hybrid electro-optic modulators[J]. Journal of Semiconductors, 2022, 43(10): 101301
    Download Citation