• Photonic Sensors
  • Vol. 12, Issue 3, 220303 (2022)
Liang ZENG1, Jiaqi LI1, Chengyi CAO1, Xudong LI1, Xinyuan ZENG1, Quanhao YU1, Kunhua WEN1、2、*, Jun YANG2、3, and Yuwen QIN2、3
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • 2Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou 510006, China
  • 3School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
  • show less
    DOI: 10.1007/s13320-022-0650-0 Cite this Article
    Liang ZENG, Jiaqi LI, Chengyi CAO, Xudong LI, Xinyuan ZENG, Quanhao YU, Kunhua WEN, Jun YANG, Yuwen QIN. An Integrated-Plasmonic Chip of Bragg Reflection and Mach-Zehnder Interference Based on Metal-Insulator-Metal Waveguide[J]. Photonic Sensors, 2022, 12(3): 220303 Copy Citation Text show less
    References

    [1] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature, 2003, 424(6950): 824–830.

    [2] X. M. Wen, Y. G. Bi, F. S. Yi, X. L. Zhang, Y. F. Liu, W. Q. Wang, et al., “Tunable surface plasmon-polariton resonance in organic light-emitting devices based on corrugated alloy electrodes,” Opto-Electronic Advances, 2021, 4(8): 200024-1–200024-7.

    [3] R. Zafar, S. Nawaz, G. Singh, A. D'Alessandro, and M. Salim, “Plasmonics-based refractive index sensor for detection of hemoglobin concentration,” IEEE Sensors Journal, 2018, 18(11): 4372–4377.

    [4] Z. Li, W. W. Liu, Z. C. Li, H. Cheng, S. Q. Chen, and J. G. Tian, “Fano-resonance-based mode-matching hybrid metasurface for enhanced second-harmonic generation,” Optics Letters, 2017, 42(16): 3117–3120.

    [5] L. W. Zhang, Q. Wang, and W. W. Meng, “Dual-band absorption enhancement of monolayer transition-metal dichalcogenides in metamaterials,” Optoelectronics Letters, 2021, 17(7): 412–417.

    [6] Z. Guo, K. Wen, Y. Qin, Y. Fang, Z. Li, and L. Chen, “A plasmonic refractive-index sensor based multiple Fano resonance multiplexing in slot-cavity resonant system,” Photonic Sensors, 2022, 12(2): 175–184.

    [7] S. L. Li, Y. L. Wang, R. Z. Jiao, L. L. Wang, G. Y. Duan, and L. Yu, “Fano resonances based on multimode and degenerate mode interference in plasmonic resonator system,” Optics Express, 2017, 25(4): 3525–3533.

    [8] Z. Chen, J. J. Chen, L. Yu, and J. H. Xiao, “Sharp trapped resonances by exciting the anti-symmetric waveguide mode in a metal-insulator-metal resonator,” Plasmonics, 2015, 10(1): 131–137.

    [9] G. C. Wang, A. Shen, C. Y. Zhao, L. Z. Yang, T. G. Dai, Y. H. Wang, et al., “Fano-resonance-based ultra-high-resolution ratio-metric wavelength monitor on silicon,” Optics Letters, 2016, 41(3): 544–547.

    [10] L. Chen, L. Zhang, and X. Xu, “Tuning of the graphene surface plasmon by the monolayer MoS2,” Optoelectronics Letters, 2021, 17(11): 646–650.

    [11] Q. Chen, L. Liang, Q. L. Zheng, Y. X. Zhang, and L. Wen, “On-chip readout plasmonic mid-IR gas sensor,” Opto-Electronic Advances, 2020, 3(7): 07190040.

    [12] G. T. Cao, H. J. Li, Y. Deng, S. P. Zhan, Z. H. He, and B. X. Li, “Plasmon-induced transparency in a single multimode stub resonator,” Optics Express, 2014, 22(21): 25215–25223.

    [13] Y. K. Gong, X. M. Liu, and L. R. Wang, “High-channel-count plasmonic filter with the metal-insulator-metal Fibonacci-sequence gratings,” Optics Letters, 2010, 35(3): 285–287.

    [14] X. Luo, X. H. Zou, X. F. Li, Z. Zhou, W. Pan, L. S. Yan, et al., “High-uniformity multichannel plasmonic filter using linearly lengthened insulators in metal–insulator–metal waveguide,” Optics Letters, 2013, 38(9): 1585–1587.

    [15] R. E. Holmlin, R. Haag, M. L. Chabinyc, R. F. Ismagilov, A. E. Cohen, A. Terfort, et al., “Electron transport through thin organic films in metal-insulator-metal junctions based on self-assembled monolayers,” Journal of the American Chemical Society, 2001, 123(21): 5075–5085.

    [16] F. Galvez, J. del Valle, A. Gomez, M. R. Osorio, D. Granados, D. Pérez de Lara, et al., “Plasmonic nanodevice with magnetic funcionalities: fabrication and characterization,” Optical Materials Express, 2016, 6(10): 3086–3096.

    [17] S. P. Zhan, H. J. Li, G. T. Cao, Z. H. He, B. X. Li, and H. Yang, “Slow light based on plasmon-induced transparency in dual-ring resonator-coupled MDM waveguide system,” Journal of Physics D: Applied Physics, 2014, 47(20): 205101.

    [18] K. Wen, L. Chen, J. Zhou, L. Lei, and Y. Fang, “A plasmonic chip-scale refractive index sensor design based on multiple Fano resonances,” Sensors, 2018, 18(10): 3181.

    [19] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Plasmonics: a necessity in the field of sensing-a review (invited),” Fiber and Integrated Optics, 2021, 40(1): 14–47.

    [20] Q. He, Y. P. Huo, Y. Y. Guo, Q. Q. Niu, X. X. Hao, P. F. Cui, et al., “Multiple adjustable Fano resonance based on double half ring resonator and its application,” Physica Scripta, 2021, 96(6): 065504.

    [21] C. Chao, Y. Chau, and H. P. Chiang, “Highly sensitive metal-insulator-metal plasmonic refractive containing defects,” Journal of Physics D: Applied Physics, 2021, 54(11): 115301.

    [22] S. M. Shen, S. C. She, Z. Y. Wang, Q. L. Tan, J. J. Xiong, and W. D. Zhang, “MIM waveguide structure consisting of two triangle stubs, side-coupled with an eight-like resonant cavity,” Optics Communications, 2021, 495: 127087.

    [23] M. A. Butt, A. Kazmierczak, N. L. Kazanskiy, and S. N. Khonina, “Metal-insulator-metal waveguide-based racetrack integrated circular cavity for refractive index sensing application,” Electronics, 2021, 10(12): 1419.

    [24] X. X. Hao, Y. P. Huo, Q. He, Y. Y. Guo, Q. Q. Niu, P. F. Cui, et al., “Multiple plasmon-induced transparency with extra-high FOM based on a MIM waveguide composed of stubs,” Physica Scripta, 2021, 96(7): 075505.

    [25] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity,” Plasmonics, 2021, 16(3): 873–880.

    [26] H. R. Shi, S. B. Yan, X. Y. Yang, X. S. Wu, W. C. Wu, and E. T. Hua, “A nanosensor based on a metal-insulator-metal bus waveguide with a stub coupled with a racetrack ring resonator,” Micromachines, 2021, 12(5): 495.

    [27] S. N. Khonina, N. L. Kazanskiy, M. A. Butt, A. Kazmierczak, and R. Piramidowicz, “Plasmonic sensor based on metal-insulator-metal waveguide square ring cavity filled with functional material for the detection of CO2 gas,” Optics Express, 2021, 29(11): 16584–16594.

    [28] Z. J. Hu, R. Ma, X. J. Zhang, Z. Y. Sun, X. Liu, J. Liu, et al., “Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating,” Optics Express, 2019, 27(3): 3255–3263.

    [29] D. Zheng, Z. Cai, I. Floris, J. Madrigal, W. Pan, X. H. Zou, et al., “Temperature-insensitive optical tilt sensor based on a single eccentric-core fiber Bragg grating,” Optics Letters, 2019, 44(22): 5570–5573.

    [30] V. Ahsani, F. Ahmed, M. B. G. Jun, and C Bradley, “Tapered fiber-optic Mach-Zehnder interferometer for ultra-high sensitivity measurement of refractive index,” Sensors, 2019, 19(7): 1652.

    [31] S. Kumar, Z. Guo, R. Singh, Q. L. Wang, B. Y. Zhang, S. Cheng, et al., “MoS2 functionalized multicore fiber probes for selective detection of shigella bacteria based on localized plasmon,” Journal of Lightwave Technology, 2021, 39(12): 4069–4081.

    [32] M. Lobry, M. Loyez, K. Chah, E. M. Hassan, E. Goormaghtigh, M. C. DeRosa, et al., “HER2 biosensing through spr-envelope tracking in plasmonic optical fiber gratings,” Biomedical Optics Express, 2020, 11(9): 4862–4871.

    [33] C. Leitao, A. Leal-Junior, A. R. Almeida, S. O. Pereira, F. M. Costa, J. L. Pinto, et al., “Cortisol AuPd plasmonic unclad POF biosensor,” Biotechnology Reports, 2021, 29: e00587.

    [34] R. Guo, M. Decker, F. Setzpfandt, I. Staude, D. N. Neshev, and Y. S. Kivshar, “Plasmonic Fano nanoantennas for on-chip separation of wavelengthencoded optical signals,” Nano Letters, 2015, 15(5): 3324–3328.

    [35] M. F. Limonov, M. V. Rybin, A. N. Poddubny, and Y. S. Kivshar, “Fano resonances in photonics,” Nature Photonics, 2017, 11(9): 543–554.

    [36] J. A. Dionne, L. A. Sweatlock, and H. A. Atwater, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Physical Review B, 2006, 73(3): 035407.

    [37] P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Physical review B, 1972, 6(12): 4370–4379.

    [38] N. Lin, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, et al., “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Materials, 2009, 8(9): 758–762.

    [39] D. Wei, “The study on the structure, plasmonic resonance modes and SERS properties of metallic nanoparticle arrays fabricated by nanosphere lithography,” Ph.D. dissertation, Nanjing University, Nanjing, 2017.

    [40] H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity,” Physical Review Letters, 2006, 96(9): 097401.

    [41] F. Ye, M. J. Burns, and M. J. Naughton, “Symmetrybroken metamaterial absorbers as reflectionless directional couplers for surface plasmon polaritons in the visible range,” Advanced Optical Materials, 2014, 2(10): 957–965.

    [42] C. Y. Chao and L. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” Journal of Lightwave Technology, 2006, 24(3): 1395–1402.

    [43] J. L. Zhang, L. Shi, S. Zhu, X. B. Xu, and X. L. Zhang, “Modeling of a single-notch microfiber coupler for high-sensitivity and low detection-limit refractive index sensing,” Sensors, 2016, 16(5): 672.

    [44] M. Rahmatiyar, M. Afsahi, and M. Danaie, “Design of a refractive index plasmonic sensor based on a ring resonator coupled to a MIM waveguide containing tapered defects,” Plasmonics, 2020, 15(6): 2169–2176.

    [45] Y. Chen, Y. Xu, and J. Cao, “Fano resonance sensing characteristics of MIM waveguide coupled square convex ring resonator with metallic baffle,” Results in Physics, 2019, 14: 102420.

    Liang ZENG, Jiaqi LI, Chengyi CAO, Xudong LI, Xinyuan ZENG, Quanhao YU, Kunhua WEN, Jun YANG, Yuwen QIN. An Integrated-Plasmonic Chip of Bragg Reflection and Mach-Zehnder Interference Based on Metal-Insulator-Metal Waveguide[J]. Photonic Sensors, 2022, 12(3): 220303
    Download Citation