• Journal of Semiconductors
  • Vol. 41, Issue 1, 011301 (2020)
Chao Zhao1、2、3、4, Bo Xu3、4, Zhijie Wang3、4, and Zhanguo Wang3、4
Author Affiliations
  • 1JARA-Fundamentals of Future Information Technology (JARA-FIT) and RWTH Aachen University, 52074 Aachen, Germany
  • 2Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany
  • 3Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences and Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Beijing 100083, China
  • 4College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101804, China
  • show less
    DOI: 10.1088/1674-4926/41/1/011301 Cite this Article
    Chao Zhao, Bo Xu, Zhijie Wang, Zhanguo Wang. Boron-doped III–V semiconductors for Si-based optoelectronic devices[J]. Journal of Semiconductors, 2020, 41(1): 011301 Copy Citation Text show less
    References

    [1] B Janjua, T K Ng, C Zhao et al. True yellow light-emitting diodes as phosphor for tunable color-rendering index laser-based white light. ACS Photonics, 3, 2089(2016).

    [2] C Zhao, T K Ng, C C Tseng et al. InGaN/GaN nanowires epitaxy on large-area MoS2 for high-performance light-emitters. RSC Adv, 7, 26665(2017).

    [3] C Zhao, M Ebaid, H Zhang et al. Quantified hole concentration in AlGaN nanowires for high-performance ultraviolet emitters. Nanoscale, 10, 15980(2018).

    [4] C Zhao, N Alfaraj, R C Subedi et al. III-nitride nanowires on unconventional substrates: From materials to optoelectronic device applications. Prog Quantum Electron, 61, 1(2018).

    [5] B Janjua, H Sun, C Zhao et al. Self-planarized quantum-disks-in-nanowires ultraviolet-B emitters utilizing pendeo-epitaxy. Nanoscale, 9, 7805(2017).

    [6] M Ebaid, D Priante, G Liu et al. Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods. Nano Energy, 37, 158(2017).

    [7] C Zhao, Y H Chen, B Xu et al. Study of the wetting layer of InAs/GaAs nanorings grown by droplet epitaxy. Appl Phys Lett, 92, 063122(2008).

    [8] C Zhao, Y H Chen, B Xu et al. Evolution of InAs nanostructures grown by droplet epitaxy. Appl Phys Lett, 91, 033112(2007).

    [9] G Siddiqi, Z Pan, S Hu. III–V semiconductor photoelectrodes. Semiconductors and Semimetals, 81(2017).

    [10]

    [11] G Roelkens, L Liu, D Liang et al. III–V/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photonics Rev, 4, 751(2010).

    [12] S Chen, W Li, J Wu et al. Electrically pumped continuous-wave III–V quantum dot lasers on silicon. Nat Photonics, 10, 307(2016).

    [13] M A Tischler, P M Mooney, B D Parker et al. Metalorganic vapor phase epitaxy and characterization of boron-doped (Al,Ga)As. J Appl Phys, 71, 984(1992).

    [14] J F Geisz, D J Friedman, S Kurtz et al. Epitaxial growth of BGaAs and BGaInAs by MOCVD. J Cryst Growth, 225, 372(2001).

    [15] G L W Hart, A Zunger. Electronic structure of BAs and boride III–V alloys. Phys Rev B, 62, 13522(2000).

    [16] W E Hoke. Molecular-beam epitaxial growth of boron-doped GaAs films. J Vac Sci Technol B, 11, 902(1993).

    [17] V K Gupta, M W Koch, N J Watkins et al. Molecular beam epitaxial growth of BGaAs ternary compounds. J Electron Mater, 29, 1387(2000).

    [18] F Tian, B Song, X Chen et al. Unusual high thermal conductivity in boron arsenide bulk crystals. Science, 361, 582(2018).

    [19] S Li, Q Zheng, Y Lv et al. High thermal conductivity in cubic boron arsenide crystals. Science, 361, 579(2018).

    [20] J S Kang, M Li, H Wu et al. Experimental observation of high thermal conductivity in boron arsenide. Science, 361, 575(2018).

    [21] H Detz, D MacFarland, T Zederbauer et al. Growth rate dependence of boron incorporation into BxGa1−xAs layers. J Cryst Growth, 477, 77(2017).

    [22] H Dumont, D Rutzinger, C Vincent et al. Surface segregation of boron in BxGa1−xAs/GaAs epilayers studied by X-ray photoelectron spectroscopy and atomic force microscopy. Appl Phys Lett, 82, 1830(2003).

    [23] S Azzi, A Zaoui, M Ferhat. On the importance of the band gap bowing in boron-based III–V ternary alloys. Solid State Commun, 144, 245(2007).

    [24] D A Pryakhin. Growth of BGaAs layers on GaAs substrates by metal–organic vapor-phase epitaxy. Semiconductors, 39, 11(2005).

    [25] H Dumont, J Dazord, Y Monteil et al. Growth and characterization of high quality BxGa1−xAs/GaAs(001) epilayers. J Cryst Growth, 248, 463(2003).

    [26] R H El-Jaroudi, K M McNicholas, B A Bouslog et al. Boron alloys for GaAs-based 1.3 μm semiconductor lasers. Conference on Lasers and Electro-Optics(2019).

    [27] J F Geisz, D J Friedman, J M Olson et al. BGaInAs alloys lattice matched to GaAs. Appl Phys Lett, 76, 1443(2000).

    [28] J F Geisz, D J Friedman, S Kurtz et al. Alternative boron precursors for BGaAs epitaxy. J Electron Mater, 30, 1387(2001).

    [29] D A Beaton, A J Ptak, K Alberi et al. Quaternary bismide alloy lattice matched to GaAs. J Cryst Growth, 351, 37(2012).

    [30] A J Ptak, D A Beaton, A Mascarenhas. Growth of BGaAs by molecular-beam epitaxy and the effects of a bismuth surfactant. J Cryst Growth, 351, 122(2012).

    [31] H Dumont, Y Monteil. Some aspects on thermodynamic properties, phase diagram and alloy formation in the ternary system BAs–GaAs—Part II: BGaAs alloy formation. J Cryst Growth, 290, 419(2006).

    [32] F Saidi, F Hassen, H Maaref et al. Optical study of BxGa1−xAs/GaAs epilayers. Mater Sci Engi C, 26, 236(2006).

    [33] F Saidi, F Hassen, H Dumont et al. Comparative optical study of GaAs1−xNx/GaAs and BxGa1−xAs/GaAs epilayers. IEE Proc - Optoelectron, 151, 342(2004).

    [34] Q Wang, Z Jia, X Ren et al. Effect of boron incorporation on the structural and photoluminescence properties of highly-strained InxGa1−xAs/GaAs multiple quantum wells. AIP Adv, 3, 072111(2013).

    [35] R Hamila, F Saidi, A Fouzri et al. Clustering effects in optical properties of BGaAs/GaAs epilayers. J Lumin, 129, 1010(2009).

    [36] R Hamila, F Saidi, P H Rodriguez et al. Growth temperature effects on boron incorporation and optical properties of BGaAs/GaAs grown by MOCVD. J Alloys Compnd, 506, 10(2010).

    [37] F Saidi, R Hamila, H Maaref et al. Structural and optical study of BxInyGa1−xyAs/GaAs and InyGa1−yAs/GaAs QW’s grown by MOCVD. J Alloys Compnd, 491, 45(2010).

    [38] P Rodriguez, L Auvray, H Dumont et al. Growth and characterization of BGaAs and BInGaAs epilayers on GaAs by MOVPE. J Cryst Growth, 298, 81(2007).

    [39] R Hamila, F Saidi, H Maaref et al. Photoluminescence properties and high resolution X-ray diffraction investigation of BInGaAs/GaAs grown by the metalorganic vapour phase epitaxy method. J Appl Phys, 112, 063109(2012).

    [40] R Hamila, F Saidi, P Rodriguez et al. Structural and optical study of BInGaAs/GaAs quantum wells grown by MOVPE emitting above 1.1 eV. Microelectron Eng, 149, 5(2016).

    [41] T Hidouri, F Saidi, H Maaref et al. Localized state exciton model investigation of B-content effect on optical properties of BGaAs/GaAs epilayers grown by MOCVD. Vacuum, 132, 10(2016).

    [42] T Hidouri, F Saidi, H Maaref et al. LSE investigation of the thermal effect on band gap energy and thermodynamic parameters of BInGaAs/GaAs single quantum well. Opt Mater, 62, 267(2016).

    [43] T Hidouri, F Saidi, H Maaref et al. Impact of photoluminescence temperature and growth parameter on the exciton localized in BxGa1-xAs/GaAs epilayers grown by MOCVD. Opt Mater, 60, 487(2016).

    [44] P Rodriguez, L Auvray, A Favier et al. Influence of boron surface enrichment on the growth mode of BGaAs epilayers grown on GaAs by metalorganic vapour phase epitaxy. Thin Solid Films, 516, 8424(2008).

    [45] S Ilahi, M Baira, F Saidi et al. Non-radiative recombination process in BGaAs/GaAs alloys: Two layer photothermal deflection model. J Alloys Compnd, 581, 358(2013).

    [46] S Ilahi, F Saidi, R Hamila et al. Photothermal deflection spectroscopy PDS investigation of optical and thermal properties of BGaAs/GaAs alloys. Curr Appl Phys, 13, 610(2013).

    [47] S Ilahi, F Saidi, R Hamila et al. Shift of the gap energy and thermal conductivity in BGaAs/GaAs alloys. Physica B, 421, 105(2013).

    [48] Q Wang, X Ren, F Wang et al. LP-MOCVD growth of ternary BxGa1−xAs epilayers on (001)GaAs substrates using TEB, TMGa and AsH3. Microelectron J, 39, 1678(2008).

    [49] Q Wang, X Ren, H Huang et al. Growth of BxGa1−xAs, BxAl1−xAs and BxGa1−xyInyAs epilayers on (001) GaAs by low pressure metalorganic chemical vapor deposition. Microelectron J, 40, 87(2009).

    [50] S Lancaster, H Groiss, T Zederbauer et al. Suppression of axial growth by boron incorporation in GaAs nanowires grown by self-catalyzed molecular beam epitaxy. Nanotechnology, 30, 065602(2019).

    [51] S K Brierley, H T Hendriks, W E Hoke et al. Observation of boron-related photoluminescence in GaAs layers grown by molecular beam epitaxy. Appl Phys Lett, 63, 812(1993).

    [52] A Kley, P Ruggerone, M Scheffler. Novel diffusion mechanism on the GaAs (001) surface: the role of adatom-dimer interaction. Phys Rev Letters, 79, 5278(1997).

    [53] B Paulus, P Fulde, H Stoll. Cohesive energies of cubic III-V semiconductors. Phys Rev B, 54, 2556(1996).

    [54] M E Groenert, R Averbeck, W Hösler et al. Optimized growth of BGaAs by molecular beam epitaxy. J Cryst Growth, 264, 123(2004).

    [55] S Lancaster, A M Andrews, M Stoeger-Pollach et al. Influence of boron antisite defects on the electrical properties of MBE-grown GaAs nanowires. Phys Status Solidi B, 256, 1800368(2019).

    [56] S R Bank, K M McNicholas, R H El-Jaroudi et al. Improved MWIR LED arrays on Si substrates for scene projectors. IEEE Research and Applications of Photonics In Defense Conference (RAPID)(2018).

    [57] A Lindsay, E P O’Reilly. Theory of electronic structure of BGaAs and related alloys. Phys Status Solidi C, 5, 454(2008).

    [58] N Sommer, R Buss, J Ohlmann et al. Growth of (BGa)As, (BGa)P, (BGa)(AsP) and (BGaIn)P by MOVPE. J Cryst Growth, 370, 191(2013).

    [59] S B Zhang, A Zunger. Surface-reconstruction-enhanced solubility of N, P, As, and Sb in III–V semiconductors. Appl Phys Lett, 71, 677(1997).

    [60] A Jenichen, C Engler. Stability and band gaps of InGaAs, BGaAs, and BInGaAs alloys: Density-functional supercell calculations. Phys Status Solidi B, 244, 1957(2007).

    [61] A Jenichen, C Engler. Boron and indium substitution in GaAs (001) surfaces: Density-functional supercell calculations of the surface stability. Surf Sci, 601, 900(2007).

    [62] A Jenichen, C Engler. Metalorganic chemical-vapour-deposition (MOCVD) of InGaAs, BGaAs, and BInGaAs: Quantum chemical calculations on the mechanisms. J Cryst Growth, 304, 26(2007).

    Chao Zhao, Bo Xu, Zhijie Wang, Zhanguo Wang. Boron-doped III–V semiconductors for Si-based optoelectronic devices[J]. Journal of Semiconductors, 2020, 41(1): 011301
    Download Citation