• Laser & Optoelectronics Progress
  • Vol. 58, Issue 6, 600004 (2021)
Peng Jiali, Zhao Yingliang*, and Wang Liming
Author Affiliations
  • Shanxi Key Laboratory of Signal Capturing and Processing, North University of China, Taiyuan, Shanxi 030051, China
  • show less
    DOI: 10.3788/LOP202158.0600004 Cite this Article Set citation alerts
    Peng Jiali, Zhao Yingliang, Wang Liming. Research on Video Abnormal Behavior Detection Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2021, 58(6): 600004 Copy Citation Text show less
    References

    [1] Afiq A A, Zakariya M A, Saad M N et al. A review on classifying abnormal behavior in crowd scene[J]. Journal of Visual Communication and Image Representation, 58, 285-303(2019). http://www.sciencedirect.com/science/article/pii/S1047320318303146

    [2] Kiran B, Thomas D, Parakkal R. An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos[J]. Journal of Imaging, 4, 36(2018).

    [3] Hu Z P, Zhang L, Li S F et al. Review of abnormal behavior detection and location for intelligent video surveillance systems[J]. Journal of Yanshan University, 43, 1-12(2019).

    [4] Wang Z G, Zhang Y J. Anomaly detection in surveillance videos: a survey[J]. Journal of Tsinghua University (Science and Technology), 60, 518-529(2020).

    [5] Duan Z J, Li S B, Hu J J et al. Review of deep learning based object detection methods and their mainstream frameworks[J]. Laser & Optoelectronics Progress, 57, 120005(2020).

    [6] Luo F B, Wang P, Liang S Y et al. Crowd abnormal behavior recognition based on deep learning and sparse optical flow[J]. Computer Engineering, 46, 287-293, 300(2020).

    [7] Hu X M, Yu J, Deng C Y et al. Abnormal crowd behavior detection and location based on spatial-temporal cube[J]. Geomatics and Information Science of Wuhan University, 44, 1530-1537(2019).

    [8] Peng Y P, Jiang R Q, Xu L. An algorithm for identifying crowd abnormal behavior based on C3D-GRNN model[J]. Measurement & Control Technology, 39, 44-50(2020).

    [9] Tran D, Bourdev L, Fergus R et al. Learning spatiotemporal features with 3D convolutional networks[C]. //2015 IEEE International Conference on Computer Vision (ICCV), December 7-13, 2015, Santiago, Chile., 4489-4497(2015).

    [10] Yang X X, Li H B, Hu G. An abnormal behavior detection algorithm based on imbalanced deep forest[J]. Journal of China Academy of Electronics and Information Technology, 14, 935-942(2019).

    [11] Ji S W, Xu W, Yang M et al. 3D convolutional neural networks for human action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35, 221-231(2013).

    [12] Hu X M, Chen Q, Yang L et al. Abnormal crowd behavior detection and localization based on deep spatial-temporal convolutional neural network[J]. Application Research of Computers, 37, 891-895(2020).

    [13] Gong M G, Zeng H M, Xie Y et al. Local distinguishability aggrandizing network for human anomaly detection[J]. Neural Networks, 122, 364-373(2020). http://www.researchgate.net/publication/337213425_Local_distinguishability_aggrandizing_network_for_human_anomaly_detection

    [14] Qiu Z F, Yao T, Mei T. Learning spatio-temporal representation with pseudo-3D residual networks[C]. //2017 IEEE International Conference on Computer Vision (ICCV), October 22-29, 2017, Venice, Italy., 5534-5542(2017).

    [15] Tran D, Wang H, Torresani L et al. A closer look at spatiotemporal convolutions for action recognition[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 6450-6459(2018).

    [16] Hu X Y, Guan Y P. 3D-LCRN based video abnormal behavior recognition[J]. Journal of Harbin Institute of Technology, 51, 183-193(2019).

    [17] Wu G L, Guo Z Z, Li L T et al. Video abnormal detection combine FCN with LSTM[J]. Journal of Shanghai Jiaotong University, 120, 1-8(2020).

    [18] Zhang L. Anomaly detection and localization in video surveillance by deep neural network[D]. Qinhuangdao: Yanshan University(2019).

    [19] Li C Z, Zhang X J, Zhu H T et al. Research on dangerous behavior identification method based on transfer learning[J]. Science Technology and Engineering, 19, 187-192(2019).

    [20] Zou Y F. Recognition and research about abnormal behavior of human based on video[D]. Kunming: Yunnan University(2019).

    [21] Wang Z W, Gao B P. Spatio-temporal fusion convolutional neural network for abnormal behavior recognition[J]. Computer Engineering and Design, 41, 2052-2056(2020).

    [22] Xia Q. Research on crowd abnormal behavior detection in video surveillance[D]. Chengdu: University of Electronic Science and Technology of China(2019).

    [23] Yuan X X. Research on video violence behavior detection algorithm of deep convolutional network[D]. Qinhuangdao: Yanshan University(2019).

    [24] Zhang M. Research on human abnormal behavior detection based on deep learning Xi'an: Xi'an University of Science and[D]. Technology(2019).

    [25] Gao Y. Fighting behavior detection in surveillance video by two-stream convolutional networks Xi'an: Xi'an University of[D]. Technology(2018).

    [26] Zhou Y Z, Sun X Y, Luo C et al. Spatiotemporal fusion in 3D CNNs: a probabilistic view[C]. //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA, 9826-9835(2020).

    [27] Sultani W, Chen C, Shah M. Real-world anomaly detection in surveillance videos[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 6479-6488(2018).

    [28] Zhu Y, Newsam S. Motion-aware feature for improved video anomaly detection[EB/OL]. [2020-06-01].https://arxiv.org/abs/1907.10211.

    [29] Zhong J X, Li N N, Kong W J et al. Graph convolutional label noise cleaner: train a plug-and-play action classifier for anomaly detection[C]. //2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 15-20, 2019, Long Beach, CA, USA, 1237-1246(2019).

    [30] Wu P, Liu J, Shi Y J et al. Not only look, but also listen: learning multimodal violence detection under weak supervision[M]. ∥Vedaldi A, Bischof H, Brox T, et al. Computer Vision-ECCV 2020. Lecture Notes in Computer Science. Cham: Springer, 12375, 322-339(2020).

    [31] Hu X, Dai J, Huang Y P et al. A weakly supervised framework for abnormal behavior detection and localization in crowded scenes[J]. Neurocomputing, 383, 270-281(2020). http://www.sciencedirect.com/science/article/pii/S0925231219316911

    [32] Zhou P P, Ding Q H, Luo H B et al. Anomaly detection and location in crowded surveillance videos[J]. Acta Optica Sinica, 38, 0815007(2018).

    [33] Liu W, Luo W X, Li Z X et al. Margin learning embedded prediction for video anomaly detection with a few anomalies[C]. //Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, August 10-16, 2019. Macao, China. California: IJCAI, 3023-3030(2019).

    [34] Xu D, Yan Y, Ricci E et al. Detecting anomalous events in videos by learning deep representations of appearance and motion[J]. Computer Vision and Image Understanding, 156, 117-127(2017).

    [35] Lei L Y. Video anomaly detection based on deep learning[D]. Hangzhou: Hangzhou Dianzi University(2018).

    [36] Fan Y X, Wen G J, Li D R et al. Video anomaly detection and localization via Gaussian mixture fully convolutional variational autoencoder[J]. Computer Vision and Image Understanding, 195, 102920(2020). http://www.researchgate.net/publication/340553092_Video_anomaly_detection_and_localization_via_Gaussian_Mixture_Fully_Convolutional_Variational_Autoencoder

    [37] Li N J, Chang F L. Video anomaly detection and localization via multivariate Gaussian fully convolution adversarial autoencoder[J]. Neurocomputing, 369, 92-105(2019). http://www.sciencedirect.com/science/article/pii/S0925231219311828

    [38] Sabokrou M, Fayyaz M, Fathy M et al. Deep-anomaly: fully convolutional neural network for fast anomaly detection in crowded scenes[J]. Computer Vision and Image Understanding, 172, 88-97(2018). http://www.sciencedirect.com/science/article/pii/s1077314218300249

    [39] Ribeiro M, Lazzaretti A E, Lopes H S. A study of deep convolutional auto-encoders for anomaly detection in videos[J]. Pattern Recognition Letters, 105, 13-22(2018). http://smartsearch.nstl.gov.cn/paper_detail.html?id=6e2d3b98cd36e7e764e026142b966e87

    [40] Zhao Y, Deng B, Shen C et al. Spatio-temporal autoencoder for video anomaly detection[C]. //Proceedings of the 25th ACM International Conference on Multimedia, October 23-27, 2017, Mountain View, CA, USA, 1933-1941(2017).

    [41] He D D. Abnormal behavior detections under surveillance video scenes[D]. Wuxi: Jiangnan University(2018).

    [42] Chen Y, He D D. Spatial-temporal stream anomaly detection based on Bayesian fusion[J]. Journal of Electronics & Information Technology, 41, 1137-1144(2019).

    [43] Chong Y S, Tay Y H[2020-06-03]. Abnormal event detection in videos using spatiotemporal autoencoder [2020-06-03].https: ∥arxiv., org/abs/1701, 01546.

    [44] Yue H C. Abnormal events detection method based on antoencoder[D]. Changchun: Jilin University(2020).

    [45] Wang T, Qiao M N, Lin Z W et al. Generative neural networks for anomaly detection in crowded scenes[J]. IEEE Transactions on Information Forensics and Security, 14, 1390-1399(2019). http://ieeexplore.ieee.org/document/8513816/references

    [46] Ouyang J, Shi Q W, Wang X X et al. Pedestrian trajectory prediction based on GAN and attention mechanism[J]. Laser & Optoelectronics Progress, 57, 141016(2020).

    [47] Wu H M. A research of unspecified anomaly detection and localization in surveillance videos[D]. Chengdu: University of Electronic Science and Technology of China(2018).

    [48] Ravanbakhsh M, Nabi M, Sangineto E et al. Abnormal event detection in videos using generative adversarial nets[C]. //2017 IEEE International Conference on Image Processing (ICIP), September 17-20, 2017, Beijing, China., 1577-1581(2017).

    [49] Ravanbakhsh M, Sangineto E, Nabi M et al. Training adversarial discriminators for cross-channel abnormal event detection in crowds[C]. //2019 IEEE Winter Conference on Applications of Computer Vision (WACV), January 7-11, 2019, Waikoloa Village, HI, USA., 1896-1904(2019).

    [50] Akcay S, Atapour-Abarghouei A, Breckon T P. GANomaly: semi-supervised anomaly detection via adversarial training[EB/OL]. [2020-06-03].https://arxiv.org/abs/1805.06725.

    [51] Liu W, Luo W X, Lian D Z et al. Future frame prediction for anomaly detection-a new baseline[C]. //2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, June 18-23, 2018, Salt Lake City, UT, USA., 6536-6545(2018).

    [52] Li Y Y, Cai Y H, Liu J Q et al. Spatio-temporal unity networking for video anomaly detection[J]. IEEE Access, 7, 172425-172432(2019). http://ieeexplore.ieee.org/document/8907783

    [53] Chen D Y, Wang P T, Yue L Y et al. Anomaly detection in surveillance video based on bidirectional prediction[J]. Image and Vision Computing, 98, 103915(2020). http://www.researchgate.net/publication/340622656_Anomaly_detection_in_surveillance_video_based_on_bidirectional_prediction