• Journal of Inorganic Materials
  • Vol. 36, Issue 9, 991 (2021)
Dongwang YANG1, Tingting LUO1、2, Xianli SU1, Jinsong WU1、2, and Xinfeng TANG1、*
Author Affiliations
  • 11. State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
  • 22. Nanostructure Research Center, Wuhan University of Technology, Wuhan 430070, China
  • show less
    DOI: 10.15541/jim20200698 Cite this Article
    Dongwang YANG, Tingting LUO, Xianli SU, Jinsong WU, Xinfeng TANG. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process[J]. Journal of Inorganic Materials, 2021, 36(9): 991 Copy Citation Text show less
    References

    [1] M ROWE D. CRC Handbook of Thermoelectrics(1995).

    [2] J HE, G KANATZIDIS M, P DRAVID V. High performance bulk thermoelectrics via a panoscopic approach. Materials Today, 16, 166-176(2013).

    [3] J SNYDER G, S TOBERER E. Complex thermoelectric materials. Nature Materials, 7, 105-114(2008).

    [4] D ZHAO L, H LO S, Y ZHANG et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 508, 373-377(2014).

    [5] X SHI, J YANG, R SALVADOR J et al. Multiple-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. Journal of the American Chemical Society, 133, 7837-7846(2011).

    [6] W ZHAO, Z LIU, Z SUN et al. Superparamagnetic enhancement of thermoelectric performance. Nature, 549, 247-251(2017).

    [7] R LIU, H CHEN, K ZHAO et al. Entropy as a gene-like performance indicator promoting thermoelectric materials. Advanced Materials, 29, 1702712(2017).

    [8] L HU, Y ZHANG, H WU et al. Entropy engineering of SnTe: multi-principal-element alloying leading to ultralow lattice thermal conductivity and state-of-the-art thermoelectric performance. Advanced Energy Materials, 8, 1802116(2018).

    [9] Y QIU, Y JIN, D WANG et al. Realizing high thermoelectric performance in GeTe through decreasing the phase transition temperature via entropy engineering. Journal of Materials Chemistry A, 7, 26393-26401(2019).

    [10] W YEH J, K CHEN S, J LIN S et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Advanced Engineering Materials, 6, 299-303(2004).

    [11] N SENKOV O, D MILLER J, B MIRACLE D et al. Accelerated exploration of multi-principal element alloys with solid solution phases. Nature Communications, 6, 1-10(2015).

    [12] Y ZHANG, T ZUO T, Z TANG et al. Microstructures and properties of high-entropy alloys. Progress in Materials Science, 61, 1-93(2014).

    [13] Y PEI, X SHI, A LALONDE et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 473, 66-69(2011).

    [14] Y PEI, A LALONDE, S IWANAGA et al. High thermoelectric figure of merit in heavy hole dominated PbTe. Energy & Environmental Science, 4, 2085-2089(2011).

    [15] P HEREMANS J, V JOVOVIC, S TOBERER E et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 321, 554-557(2008).

    [16] N GUIN S, A CHATTERJEE, S NEGI D et al. High thermoelectric performance in tellurium free p-type AgSbSe2. Energy & Environmental Science, 6, 2603-2608(2013).

    [17] L PAN, D BÉRARDAN, N DRAGOE. High thermoelectric properties of n-type AgBiSe2. Journal of the American Chemical Society, 135, 4914-4917(2013).

    [18] S PARKER D, F MAY A, J SINGH D. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Physical Review Applied, 3, 064003(2015).

    [19] N GUIN S, K BISWAS. Cation disorder and bond anharmonicity optimize the thermoelectric properties in kinetically stabilized rocksalt AgBiS2 nanocrystals. Chemistry of Materials, 25, 3225-3231(2013).

    [20] L CHAMBERLAIN A, G FAHRENHOLTZ W, E HILMAS G. Pressureless sintering of zirconium diboride. Journal of the American Ceramic Society, 89, 450-456(2006).

    [21] L PEI Y, H WU, J SUI et al. High thermoelectric performance in n-type BiAgSeS due to intrinsically low thermal conductivity. Energy & Environmental Science, 6, 1750-1755(2013).

    [22] X SU, F FU, Y YAN et al. Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing. Nature Communication, 5, 4908-4914(2014).

    [23] T HU, D YANG, X SU et al. Interpreting the combustion process for high-performance ZrNiSn thermoelectric materials. ACS Applied Materials & Interfaces, 10, 864-872(2017).

    [24] D YANG, X SU, Y YAN et al. Manipulating the combustion wave during self-propagating synthesis for high thermoelectric performance of layered oxychalcogenide Bi1-xPbxCuSeO. Chemistry of Materials, 28, 4628-4640(2016).

    [25] D YANG, X SU, F MENG et al. Facile room temperature solventless synthesis of high thermoelectric performance Ag2Se via a dissociative adsorption reaction. Journal of Materials Chemistry A, 5, 23243-23251(2017).

    [26] G MERZHANOV A. SHS processes: combustion theory and practice. Arch. Combustionis, 1, 4(1981).

    [27] C XIAO, X QIN, J ZHANG et al. High thermoelectric and reversible p-n-p conduction type switching integrated in dimetal chalcogenide. Journal of the American Chemical Society, 134, 18460-18466(2012).

    Dongwang YANG, Tingting LUO, Xianli SU, Jinsong WU, Xinfeng TANG. Unveiling the Intrinsic Low Thermal Conductivity of BiAgSeS through Entropy Engineering in SHS Kinetic Process[J]. Journal of Inorganic Materials, 2021, 36(9): 991
    Download Citation