• Chinese Optics Letters
  • Vol. 20, Issue 4, 042201 (2022)
Xiuyu Wang1, Jihong Xin1, Qun Ren2、3、*, Haocheng Cai2, Jiaqi Han4、**, Chengyi Tian5, Pengcheng Zhang2, Lijie Jiang2, Zhihao Lan6, Jianwei You3, and Wei E. I. Sha7、***
Author Affiliations
  • 1Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • 3State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China
  • 4Key Laboratory of High Speed Circuit Design and EMC of Ministry of Education, School of Electronic Engineering, Xidian University, Xi’an 710071, China
  • 5Huawei Technologies Company Ltd., Shanghai 518129, China
  • 6Department of Electronic and Electrical Engineering, University College London, London WC1E7JE, UK
  • 7Key Laboratory of Micro-Nano Electronic Devices and Smart Systems of Zhejiang Province, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
  • show less
    DOI: 10.3788/COL202220.042201 Cite this Article Set citation alerts
    Xiuyu Wang, Jihong Xin, Qun Ren, Haocheng Cai, Jiaqi Han, Chengyi Tian, Pengcheng Zhang, Lijie Jiang, Zhihao Lan, Jianwei You, Wei E. I. Sha. Plasmon hybridization induced by quasi bound state in the continuum of graphene metasurfaces oriented for high-accuracy polarization-insensitive two-dimensional sensors[J]. Chinese Optics Letters, 2022, 20(4): 042201 Copy Citation Text show less
    References

    [1] J. You, X. Li, F. Xie, W. E. I. Sha, J. H. W. Kwong, G. Li, W. C. H. Choy, Y. Yang. Surface plasmon and scattering-enhanced low-bandgap polymer solar cell by a metal grating back electrode. Adv. Energy Mater., 2, 1203(2012).

    [2] S. Sun, H. Chen, W. Zheng, G. Guo. Dispersion relation, propagation length and mode conversion of surface plasmon polaritons in silver double-nanowire systems. Opt. Express, 21, 14591(2013).

    [3] Y. Zhan, Y. Li, Z. Wu, S. Hu, Z. Li, X. Liu, J. Yu, Y. Huang, G. Jing, H. Lu, H. Guan, W. Qiu, J. Dong, W. Zhu, J. Tang, Y. Luo, J. Zhang, Z. Chen. Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires. Opt. Mater. Express, 8, 3927(2018).

    [4] Y. Zheng, H. Liu, J. Li, J. Xiang, M. Panmai, Q. Dai, Y. Xu, S. Tie, S. Lan. Controllable formation of luminescent carbon quantum dots mediated by the Fano resonances formed in oligomers of gold nanoparticles. Adv. Mater., 31, 1901371(2019).

    [5] M. Olszyna, A. Debrassi, C. Üzüm, L. Dähne. Label-free bioanalysis based on low-Q whispering gallery modes: rapid preparation of microsensors by means of layer-by-layer technology. Adv. Funct. Mater., 29, 1805998(2019).

    [6] Y. Kuai, J. Chen, X. Tang, Y. Xiang, F. Lu, C. Kuang, L. Xu, W. Shen, J. Cheng, H. Gui, G. Zou, P. Wang, H. Ming, J. Liu, X. Liu, J. R. Lakowicz, D. Zhang. Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination. Sci. Adv., 5, v5335(2019).

    [7] F. Wang, B. Chen, B. Yan, Y. Yin, L. Hu, Y. Liang, M. Song, G. Jiang. Scattered light imaging enables real-time monitoring of label-free nanoparticles and fluorescent biomolecules in live cells. J. Am. Chem. Soc., 141, 14043(2019).

    [8] N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342(2010).

    [9] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett., 10, 1103(2010).

    [10] H. Tayoub, A. Hocini, A. Harhouz. High-sensitive mid-infrared photonic crystal sensor using slotted-waveguide coupled-cavity. Prog. Electromagn. Res. M, 105, 45(2021).

    [11] Y. Qin, Y. Fang, L. Wang, S. Tang, S. Sun, Z. Liu, Y. Mei. Surface wave resonance and chirality in a tubular cavity with metasurface design. Opt. Commun., 417, 42(2018).

    [12] F. Guan, S. Sun, S. Ma, Z. Fang, B. Zhu, X. Li, Q. He, S. Xiao, L. Zhou. Transmission/reflection behaviors of surface plasmons at an interface between two plasmonic systems. J. Condens. Matter Phys., 30, 114002(2018).

    [13] J. Li, Y. Xu, Q. Dai, S. Lan, S. Tie. Manipulating light-matter interaction in a gold nanorod assembly by plasmonic coupling. Laser Photonics Rev., 10, 826(2016).

    [14] W. Sun, Q. He, S. Sun, L. Zhou. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations. Light Sci. Appl., 5, e16003(2016).

    [15] S. Sun, Q. He, J. Hao, S. Xiao, L. Zhou. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380(2019).

    [16] J. W. You, N. C. Panoiu. Plasmon-induced nonlinearity enhancement and homogenization of graphene metasurfaces. Opt. Lett., 44, 3030(2019).

    [17] X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, J. Yao. The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells. Biosens. Bioelectron., 126, 485(2019).

    [18] C. Wang, X. Jiang, G. Zhao, M. Zhang, C. W. Hsu, B. Peng, A. D. Stone, L. Jiang, L. Yang. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys., 16, 334(2020).

    [19] J. Zhong, X. Xu, Y. Lin. Tunable terahertz metamaterial with electromagnetically induced transparency characteristic for sensing application. Nanomaterials, 11, 2175(2021).

    [20] N. P. Montoni, S. C. Quillin, C. Cherqui, D. J. Masiello. Tunable spectral ordering of magnetic plasmon resonances in noble metal nanoclusters. ACS Photonics, 5, 3272(2018).

    [21] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy, A. V. Zayats. Plasmonic nanorod metamaterials for biosensing. Nat. Mater., 8, 867(2009).

    [22] C. Gong, M. S. Leite. Noble metal alloys for plasmonics. ACS Photonics, 3, 507(2016).

    [23] D. Z. Manrique, J. W. You, H. Deng, F. Ye, N. C. Panoiu. Quantum plasmon engineering with interacting graphene nanoflakes. J. Phys. Chem. C, 121, 27597(2017).

    [24] Q. Ren, J. W. You, N. Panoiu. Comparison between the linear and nonlinear homogenization of graphene and silicon metasurfaces. IEEE Access, 8, 175753(2020).

    [25] Q. Ren, J. W. You, N. C. Panoiu. Large enhancement of the effective second-order nonlinearity in graphene metasurfaces. Phys. Rev. B, 99, 205404(2019).

    [26] Z. Lan, J. W. You, Q. Ren, W. E. I. Sha, N. C. Panoiu. Second-harmonic generation via double topological valley-Hall kink modes in all-dielectric photonic crystals. Phys. Rev. A, 103, L041502(2021).

    [27] X. Xiong, Y. Chen, H. Wang, S. Hu, Y. Luo, J. Dong, W. Zhu, W. Qiu, H. Guan, H. Lu, J. Yu, J. Zhang, Z. Chen. Plasmonic interface modified with graphene oxide sheets overlayer for sensitivity enhancement. ACS Appl. Mater. Interfaces, 10, 34916(2018).

    [28] R. Wang, X. Ren, Z. Yan, L. Jiang, W. E. I. Sha, G. Shan. Graphene based functional devices: a short review. Front. Phys., 14, 13603(2019).

    [29] Y. Yin, J. Pang, J. Wang, X. Lu, Q. Hao, E. Saei Ghareh Naz, X. Zhou, L. Ma, O. G. Schmidt. Graphene-activated optoplasmonic nanomembrane cavities for photodegradation detection. ACS Appl. Mater. Interfaces, 11, 15891(2019).

    [30] Y. Qin, X. Xiong, W. Sha, L. J. Jiang. Electrically tunable polarizer based on graphene-loaded plasmonic cross antenna. J. Phys. Condens. Matter, 30, 144007(2018).

    [31] Y. P. Chen, W. E. I. Sha, L. Jiang, J. Hu. Graphene plasmonics for tuning photon decay rate near metallic split-ring resonator in a multilayered substrate. Opt. Express, 23, 2798(2015).

    [32] X. Ren, W. E. I. Sha, W. C. H. Choy. Tuning optical responses of metallic dipole nanoantenna using graphene. Opt. Express, 21, 31824(2013).

    [33] Q. Ren, F. Feng, X. Yao, Q. Xu, M. Xin, Z. Lan, J. You, X. Xiao, W. E. I. Sha. Multiplexing-oriented plasmon-MoS2 hybrid metasurfaces driven by nonlinear quasi bound states in the continuum. Opt. Express, 29, 5384(2021).

    [34] Z. Zhang, F. Qin, Y. Xu, S. Fu, Y. Wang, Y. Qin. Negative refraction mediated by bound states in the continuum. Photonics Res., 9, 1592(2021).

    [35] J. Xiang, Y. Xu, J. Chen, S. Lan. Tailoring the spatial localization of bound state in the continuum in plasmonic-dielectric hybrid system. Nanophotonics, 9, 133(2020).

    [36] Q. Ren, J. W. You, N. C. Panoiu. Giant enhancement of the effective Raman susceptibility in metasurfaces made of silicon photonic crystal nanocavities. Opt. Express, 26, 30383(2018).

    [37] X. Wang, J. Ma, Q. Ren, M. Wang, Z. Yang, J. Xin. Effects of Fe3+-doping and nano-TiO2/WO3 decoration on the ultraviolet absorption and gas-sensing properties of ZnSnO3 solid particles. Sens. Actuators B, 344, 130223(2021).

    [38] Z. Liu, Y. Xu, Y. Lin, J. Xiang, T. Feng, Q. Cao, J. Li, S. Lan, J. Liu. High-Q quasibound states in the continuum for nonlinear metasurfaces. Phys. Rev. Lett., 123, 253901(2019).

    [39] H. Hao, S. Zheng, Y. Tang, X. Ran. Design of electromagnetic wave multi-type focusing based on 1-bit metasurface. Prog. Electromagn. Res. M, 105, 79(2021).

    [40] Q. Fu, Q. Feng, H. Chen. Design and optimization of CPW-fed broadband circularly polarized antenna for multiple communication systems. Prog. Electromagn. Res. M, 99, 65(2021).

    [41] X. Lai, Q. Ren, F. Vogelbacher, W. E. I. Sha, X. Hou, X. Yao, Y. Song, M. Li. Bioinspired quasi-3D multiplexed anti-counterfeit imaging via self-assembled and nanoimprinted photonic architectures. Adv. Mater., 34, 2107243(2021).

    [42] R. Hao, E. Cassan, Y. Xu, M. Qiu, X. Wei, E. Li. Reconfigurable parallel plasmonic transmission lines with nanometer light localization and long propagation distance. IEEE J. Sel. Top. Quantum Electron., 19, 4601809(2013).

    [43] G. Calvaruso, A. Zaeim. On the symmetries of the Lorentzian oscillator group. Collect. Math., 68, 51(2017).

    [44] J. Applequist, K. R. Sundberg, M. L. Olson, L. C. Weiss. A normal mode treatment of optical properties of a classical coupled dipole oscillator system with Lorentzian band shapes. J. Chem. Phys., 70, 1240(1979).

    [45] E. Ott, T. M. Antonsen. Low dimensional behavior of large systems of globally coupled oscillators. Chaos, 18, 37113(2008).

    [46] F. Chen, K. Li. One-step absolutely stable FDTD methods for electromagnetic simulation. Prog. Electromagn. Res., 100, 45(2021).

    Data from CrossRef

    [1] Xiuyu Wang, Xiaoman Wang, Qun Ren, Haocheng Cai, Jihong Xin, Yuxin Lang, Xiaofei Xiao, Zhihao Lan, Jian Wei You, Wei E. I. Sha. Polarization multiplexing multichannel high-Q terahertz sensing system. Frontiers in Nanotechnology, 5, 1112346(2023).

    Xiuyu Wang, Jihong Xin, Qun Ren, Haocheng Cai, Jiaqi Han, Chengyi Tian, Pengcheng Zhang, Lijie Jiang, Zhihao Lan, Jianwei You, Wei E. I. Sha. Plasmon hybridization induced by quasi bound state in the continuum of graphene metasurfaces oriented for high-accuracy polarization-insensitive two-dimensional sensors[J]. Chinese Optics Letters, 2022, 20(4): 042201
    Download Citation