• Infrared and Laser Engineering
  • Vol. 51, Issue 1, 20210857 (2022)
Yiwen Zhang, Yu Cai, Lixin Yuan, and Minglie Hu
Author Affiliations
  • Ultrafast Laser Laboratory, College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/IRLA20210857 Cite this Article
    Yiwen Zhang, Yu Cai, Lixin Yuan, Minglie Hu. Ultra-short pulse fiber amplifier model based on recurrent neural network (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210857 Copy Citation Text show less
    Schematic of numerical calculationsmodel of fiber amplifiers
    Fig. 1. Schematic of numerical calculationsmodel of fiber amplifiers
    Schematic of the recurrent neural network architecture
    Fig. 2. Schematic of the recurrent neural network architecture
    Evolution of pulses calculated using NLSE&RE and RNN respectively. (a) Time domain evolution; (b) Frequency domain evolution; (c) Pulse width (blue line) and spectral width (red line)
    Fig. 3. Evolution of pulses calculated using NLSE&RE and RNN respectively. (a) Time domain evolution; (b) Frequency domain evolution; (c) Pulse width (blue line) and spectral width (red line)
    Time domain and frequency of pulses at different transmission distances calculated using NLSE&RE (red dotted line) and RNN (blue solid line) respectively
    Fig. 4. Time domain and frequency of pulses at different transmission distances calculated using NLSE&RE (red dotted line) and RNN (blue solid line) respectively
    Calculation time versus number of grid points and calculation steps by using NLSE&RE and RNN respectively
    Fig. 5. Calculation time versus number of grid points and calculation steps by using NLSE&RE and RNN respectively
    Comparison of experimental results with simulation results. (a) Amplifier power; (b) Time domain of output pulses; (c) Spectrum of output pulses, where GNLSE&RE calculated results are red dotted lines, RNN predicted results are blue solid lines and experimental results are black solid lines
    Fig. 6. Comparison of experimental results with simulation results. (a) Amplifier power; (b) Time domain of output pulses; (c) Spectrum of output pulses, where GNLSE&RE calculated results are red dotted lines, RNN predicted results are blue solid lines and experimental results are black solid lines
    ParametersValueSourceParametersValueSource
    ${\lambda _0}/ {{\text{nm}}} $1 975Measured${\lambda _{\text{p}}}/ {{\text{nm}}} $793Measured
    ${\sigma _{\text{a} } } \left({ {\lambda _j} } \right)/ { { {\text{m} }^{\text{2} } } }$FittedJackson[16]${\sigma _{\text{a} } } \left( { {\lambda _{\text{p} } } } \right)/ { { {\text{m} }^{\text{2} } } }$$6 \times {10^{ - 25}}$Smith[20]
    ${\sigma _{\text{e} } } \left({ {\lambda _j} } \right)/ { { {\text{m} }^{\text{2} } } }$FittedJackson[16]${\sigma _{\text{e} } }\left( { {\lambda _{\text{p} } } } \right)/ { { {\text{m} }^{\text{2} } } }$$5 \times {10^{ - 26}}$Smith[20]
    ${N_{\text{d}}}/ {{{\text{m}}^{-3}}} $$1.7 \times {10^{26}}$NUFERN$V$3.02NUFERN
    ${D_{ {\text{core} } } }/ { {\text{μ} }{\rm{m} } }$10NUFERN${D_{ {\text{clad} } } }/ { {\text{μ } } }{\rm{m} }$130NUFERN
    ${A_{\rm{eff} } }/{ {\text{μ } }{ {\rm{m} }^{\text{2} } } }$72.7Calculated[21]${A_{\text{p} } }/ {\text{μ } } {\text{m} }^{\text{2} }$$1.40 \times {10^4}$Calculated[21]
    $ {\varGamma _{\text{s}}} $0.88Calculated[21]$ {\varGamma _{\text{p}}} $$5.6 \times {10^{ - 3}}$Calculated[21]
    ${A_{30}}/ {{{\text{s}}^{{{ - 1}}}}} $0${A_{31}}/ {{{\text{s}}^{{{ - 1}}}}} $$7 \times {10^4}$Jackson[16]
    ${A_{32}}/ {{{\text{s}}^{{{ - 1}}}}} $0${A_{20}}/ {{{\text{s}}^{{{ - 1}}}}} $0
    ${A_{21}}/ {{{\text{s}}^{{{ - 1}}}}} $0${A_{10}}/ {{{\text{s}}^{{{ - 1}}}}} $3000Jackson[16]
    ${k_{3011} }/ { { {\text{m} }^{\text{3} } } \cdot { {\text{s} }^{ { { - 1} } } } }$$2 \times {10^{ - 22}}$Smith[20]$ {k_{1130}}/ {{{\text{m}}^{\text{3}}} \cdot {{\text{s}}^{{{ - 1}}}}} $$2 \times {10^{ - 23}}$Smith[20]
    ${k_{2011} }/ { { {\text{m} }^{\text{3} } } \cdot { {\text{s} }^{ { { - 1} } } } } $0$ {k_{1120}}/ {{{\text{m}}^{\text{3}}} \cdot {{\text{s}}^{{{ - 1}}}}} $0
    ${\alpha _{\text{s} } }/ { { {\text{m} }^{ { { - 1} } } }}$$2.3 \times {10^{ - 3}}$Jackson[16]${\alpha _{_{\text{p} } } } / { { {\text{m} }^{ { { - 1} } } }}$$1.2 \times {10^{ - 2}}$Jackson[16]
    ${\beta _2}/ { {\text{p} }{ {\text{s} }^{\text{2} } }\cdot{\text{k} }{ {\text{m} }^{ { { - 1} } } } }$−88NUFERN${\beta _3}/ { {\text{p} }{ {\text{s} }^{\text{3} } }\cdot{\text{k} }{ {\text{m} }^{ { { - 1} } } }}$+0.28NUFERN
    ${n_2}/ { { {\text{m} }^{\text{2} } }\cdot{ {\text{W} }^{ { { - 1} } } } }$$2.3 \times {10^{ - 20}}$Agrawal[18]$\gamma / { { {\text{m} }^{ - 1} }\cdot{ {\text{W} }^{ { { - 1} } } }}$0.0010Calculated[18]
    Table 1. Parameters used in the simulation
    Yiwen Zhang, Yu Cai, Lixin Yuan, Minglie Hu. Ultra-short pulse fiber amplifier model based on recurrent neural network (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210857
    Download Citation