• Advanced Photonics
  • Vol. 1, Issue 6, 066001 (2019)
Jian Zhao1、†,*, Yangyang Sun1, Hongbo Zhu2, Zheyuan Zhu1, Jose E. Antonio-Lopez1, Rodrigo Amezcua Correa1, Shuo Pang1, and Axel Schulzgen1
Author Affiliations
  • 1University of Central Florida, CREOL, The College of Optics and Photonics, Orlando, Florida, United States
  • 2Chinese Academy of Sciences, Changchun Institute of Optics, Fine Mechanics and Physics, State Key Laboratory of Luminescence and Applications, Changchun, China
  • show less
    DOI: 10.1117/1.AP.1.6.066001 Cite this Article Set citation alerts
    Jian Zhao, Yangyang Sun, Hongbo Zhu, Zheyuan Zhu, Jose E. Antonio-Lopez, Rodrigo Amezcua Correa, Shuo Pang, Axel Schulzgen. Deep-learning cell imaging through Anderson localizing optical fiber[J]. Advanced Photonics, 2019, 1(6): 066001 Copy Citation Text show less
    References

    [1] F. Koenig, J. Knittel, H. Stepp. Diagnosing cancer in vivo. Science, 292, 1401-1403(2001).

    [2] V. Szabo et al. Spatially selective holographic photoactivation and functional fluorescence imaging in freely behaving mice with a fiberscope. Neuron, 84, 1157-1169(2014).

    [3] B. A. Flusberg et al. Fiber-optic fluorescence imaging. Nat. Methods, 2, 941-950(2005).

    [4] T. J. Muldoon et al. Subcellular-resolution molecular imaging within living tissue by fiber microendoscopy. Opt. Express, 15, 16413-16423(2007).

    [5] T. Cizmar, K. Dholakia. Exploiting multimode waveguides for pure fibre-based imaging. Nat. Commun., 3, 1027(2012).

    [6] Y. Choi et al. Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber. Phys. Rev. Lett., 109, 203901(2012).

    [7] I. N. Papadopoulos et al. High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber. Biomed. Opt. Express, 4, 260-270(2013).

    [8] M. Hughes, T. P. Chang, G.-Z. Yang. Fiber bundle endocytoscopy. Biomed. Opt. Express, 4, 2781-2794(2013).

    [9] S. Ohayon et al. Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging. Biomed. Opt. Express, 9, 1492-1509(2018).

    [10] Y. Chang et al. Compact high-resolution endomicroscopy based on fiber bundles and image stitching. Opt. Lett., 43, 4168-4171(2018).

    [11] K. L. Reichenbach, C. Xu. Numerical analysis of light propagation in image fibers or coherent fiber bundles. Opt. Express, 15, 2151-2165(2007).

    [12] X. Chen, K. L. Reichenbach, C. Xu. Experimental and theoretical analysis of core-to-core coupling on fiber bundle imaging. Opt. Express, 16, 21598-21607(2008).

    [13] J. M. Stone et al. Low index contrast imaging fibers. Opt. Lett., 42, 1484-1487(2017).

    [14] D. Kim et al. Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle. Opt. Lett., 39, 1921-1924(2014).

    [15] U. Weiss, O. Katz. Two-photon lensless micro-endoscopy with in-situ wavefront correction. Opt. Express, 26, 28808-28817(2018).

    [16] V. Tsvirkun et al. Widefield lensless endoscopy with a multicore fiber. Opt. Lett., 41, 4771-4774(2016).

    [17] E. R. Andresen et al. Ultrathin Endoscopes Based on Multicore Fibers and Adaptive Optics: A Status Review and Perspectives(2016).

    [18] T. Čižmár, K. Dholakia. Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics. Opt. Express, 19, 18871-18884(2011).

    [19] S. Turtaev et al. High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging. Light Sci. Appl., 7, 92(2018).

    [20] S. M. Popoff et al. Controlling light through optical disordered media: transmission matrix approach. New J. Phys., 13, 123021(2011).

    [21] S. M. Popoff et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    [22] H. Yu et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl Phys., 15, 632-641(2015).

    [23] Y. Rivenson et al. Deep learning microscopy. Optica, 4, 1437-1443(2017).

    [24] S. Li et al. Imaging through glass diffusers using densely connected convolutional networks. Optica, 5, 803-813(2018).

    [25] Y. Li, Y. Xue, L. Tian. Deep speckle correlation: a deep learning approach toward scalable imaging through scattering media. Optica, 5, 1181-1190(2018).

    [26] Y. Rivenson et al. Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nat. Biomed. Eng., 3, 466-477(2019).

    [27] Y. Xue et al. Reliable deep-learning-based phase imaging with uncertainty quantification. Optica, 6, 618-629(2019).

    [28] H. Pinkard et al. Deep learning for single-shot autofocus microscopy. Optica, 6, 794-797(2019).

    [29] J. Zhao et al. A path to high-quality imaging through disordered optical fibers: a review. Appl. Opt., 58, D50-D60(2019).

    [30] M. T. McCann, K. H. Jin, M. Unser. Convolutional neural networks for inverse problems in imaging: a review. IEEE Signal Process. Mag., 34, 85-95(2017).

    [31] S. Karbasi et al. Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers. Opt. Express, 20, 18692-18706(2012).

    [32] J. Zhao et al. Deep learning imaging through fully-flexible glass-air disordered fiber. ACS Photonics, 5, 3930-3935(2018).

    [33] B. Rahmani et al. Multimode optical fiber transmission with a deep learning network. Light Sci. Appl., 7, 69(2018).

    [34] N. Borhani et al. Learning to see through multimode fibers. Optica, 5, 960-966(2018).

    [35] P. Wang, J. Di. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet. Appl. Opt., 57, 8258-8263(2018).

    [36] U. Kürüm et al. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array. Opt. Express, 27, 20965-20979(2019).

    [37] J. Shao et al. Fiber bundle image restoration using deep learning. Opt. Lett., 44, 1080-1083(2019).

    [38] G. Ruocco et al. Disorder-induced single-mode transmission. Nat. Commun., 8, 14571(2017).

    [39] J. Zhao et al. Image transport through meter-long randomly disordered silica-air optical fiber. Sci. Rep., 8, 3065(2018).

    [40] A. Mafi. Transverse Anderson localization of light: a tutorial. Adv. Opt. Photonics, 7, 459-515(2015).

    [41] S. Karbasi, K. W. Koch, A. Mafi. Image transport quality can be improved in disordered waveguides. Opt. Commun., 311, 72-76(2013).

    [42] B. Abaie et al. Disorder-induced high-quality wavefront in an Anderson localizing optical fiber. Optica, 5, 984-987(2018).

    [43] S. Karbasi, K. W. Koch, A. Mafi. Multiple-beam propagation in an Anderson localized optical fiber. Opt. Express, 21, 305-313(2013).

    [44] W. Schirmacher et al. What is the right theory for Anderson localization of light? An experimental test. Phys. Rev. Lett., 120, 067401(2018).

    [45] C. J. R. Sheppard. Defocused transfer function for a partially coherent microscope and application to phase retrieval. J. Opt. Soc. Am. A, 21, 828-831(2004).

    [46] M. Plöschner, T. Tyc, T. Čižmár. Seeing through chaos in multimode fibres. Nat. Photonics, 9, 529-535(2015).

    [47] A. Mafi et al. Disordered Anderson localization optical fibers for image transport—a review. J. Lightwave Technol.(2019). https://doi.org/10.1109/JLT.2019.2916020

    [48] S. Karbasi, K. W. Koch, A. Mafi. Modal perspective on the transverse Anderson localization of light in disordered optical lattices. J. Opt. Soc. Am. B, 30, 1452-1461(2013).

    CLP Journals

    [1] Lifeng Ma, Jing Li, Zhouhui Liu, Yuxuan Zhang, Nianen Zhang, Shuqiao Zheng, Cuicui Lu. Intelligent algorithms: new avenues for designing nanophotonic devices [Invited][J]. Chinese Optics Letters, 2021, 19(1): 011301

    Jian Zhao, Yangyang Sun, Hongbo Zhu, Zheyuan Zhu, Jose E. Antonio-Lopez, Rodrigo Amezcua Correa, Shuo Pang, Axel Schulzgen. Deep-learning cell imaging through Anderson localizing optical fiber[J]. Advanced Photonics, 2019, 1(6): 066001
    Download Citation