• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 2, 196 (2017)
NI Wen-Jin1、*, CHEN Jie1, LIANG Yan1, and ZENG He-Ping1、2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.02.012 Cite this Article
    NI Wen-Jin, CHEN Jie, LIANG Yan, ZENG He-Ping. Optical time domain reflectometer based on high-speed single-photon detection[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 196 Copy Citation Text show less
    References

    [1] Nazarathy M, Newton S A, Giffar R P, et al. Real-time long range complementary correlation optical time domain reflectometer[J]. Journal of Lightwave Technology, 1989, 7(1): 24-38.

    [2] Kobayashi M, Hanafusa H, Takada K, et al. Polarization-independent interferometric optical-time-domain reflectometer[J]. Journal of Lightwave Technology, 1991, 9(5): 623-628.

    [3] Wang Y, Wang B, Wang A. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19):1636-1638.

    [4] Somemura Y, Deguchi K. Effects of fresnel diffraction on resolution and linewidth control in synchrotron radiation lithography[J]. Japanese Journal of Applied Physics, 1992, 31(3R): 938-944.

    [5] Muffoletto R P, Tyler J M, Tohline J E. Shifted Fresnel diffraction for computational holography[J]. Optics Express, 2007, 15(9):5631-40.

    [6] Williams G J, Quiney H M, Dhal B B, et al. Fresnel coherent diffractive imaging[J]. Physical Review Letters, 2006, 97(2):1-38.

    [8] Lacaita A L, Francese P A, Cova S D, et al. Single-photon optical-time-domain reflectometer at 1.3 Mum with 5-cm resolution and high sensitivity[J]. Optics Letters, 1993, 18(13):1110-1112.

    [9] Rioux M. Laser range finder based on synchronized scanners[J]. Applied Optics, 1984, 23(21): 3837-3837.

    [11] Lacaita A, Francese P A, Zappa F, et al. Single-photon detection beyond 1 μm: performance of commercially available germanium photodiodes[J]. Applied Optics, 1994, 33(30): 6902-18.

    [12] Korneev A, Vachtomin Y, Minaeva O, et al. Single-photon detection system for quantum optics applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(4): 944-951.

    [13] Astafiev O, Antonov V, Kutsuwa T, et al. A single-photon detector in the far-infrared range[J]. Nature, 2015, 403(403): 405-7.

    [14] Pellion D, Jradi K, Moutier F, et al. APD photodetectors in the Geiger photon counter mode[J]. Nuclear Instruments & Methods in Physics Research, 2006, 567(1): 41-44.

    [16] Rarity J G, Wall T E, Ridley K D, et al. Single-photon counting for the 1300-1600-nm range by use of peltier-cooled and passively quenched InGaAs avalanche photodiodes[J]. Applied Optics, 2000,39(36): 6746-53.

    [17] Ribordy G, Gautier J D, Zbinden H, et al. Performance of InGaAs/InP avalanche photodiodes as Gated-mode photon counters[J]. Applied Optics, 1998, 37(12): 2272-7.

    [18] Tomita A, Nakamura K. Balanced, gated-mode photon detector for quantum-bit discrimination at 1550 nm[J]. Optics Letters, 2002, 27(20):1827-9.

    [20] Kang Y, Lu H X, Lo Y H, et al. Dark count probability and quantum efficiency of avalanche photodiodes for single-photon detection[J]. Applied Physics Letters, 2003, 83(14): 2955-2957.

    NI Wen-Jin, CHEN Jie, LIANG Yan, ZENG He-Ping. Optical time domain reflectometer based on high-speed single-photon detection[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 196
    Download Citation