• Photonics Research
  • Vol. 5, Issue 5, 481 (2017)
Li-Guo Qin1、2、*, Zhong-Yang Wang2、3, Shang-Qing Gong4, and Hong-Yang Ma1
Author Affiliations
  • 1School of Science, Qingdao University of Technology, Qingdao 266000, China
  • 2Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
  • 3e-mail: wangzy@sari.ac.cn
  • 4Department of Physics, East China University of Science and Technology, Shanghai 200237, China
  • show less
    DOI: 10.1364/PRJ.5.000481 Cite this Article Set citation alerts
    Li-Guo Qin, Zhong-Yang Wang, Shang-Qing Gong, Hong-Yang Ma. Electro-optic waveform interconnect based on quantum interference[J]. Photonics Research, 2017, 5(5): 481 Copy Citation Text show less
    References

    [1] C. Batten, A. Joshi, J. Orcutt, C. Holzwarth. Building manycore processor-to-DRAM networks with monolithic CMOS silicon photonics. IEEE Micro, 29, 8-21(2009).

    [2] D. A. Miller. Rationale and challenges for optical interconnects to electronic chips. Proc. IEEE, 88, 728-749(2000).

    [3] A. Shacham, K. Bergman, L. P. Carloni. Photonic networks-on-chip for future generations of chip multiprocessors. IEEE Trans. Comput., 57, 1246-1260(2008).

    [4] C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanović, R. J. Ram, M. A. Popović, V. M. Stojanović. Single-chip microprocessor that communicates directly using light. Nature, 528, 534-538(2015).

    [5] C. Huang, R. Lamond, S. K. Pickus, Z. R. Li, V. J. Sorger. A sub-λ-size modulator beyond the efficiency-loss limit. IEEE Photon. J., 57, 2202411(2013).

    [6] K. Liu, C. R. Ye, S. Khan, V. J. Sorger. Review and perspective on ultrafast wavelength-size electro-optic modulators. Laser Photon. Rev., 9, 172-194(2015).

    [7] P. Chaisakul, D. Marris-Morini, M.-S. Rouifed, J. Frigerio, D. Chrastina, J.-R. Coudevylle, X. L. Roux, S. Edmond, G. Isella, L. Vivien. Recent progress in GeSi electro-absorption modulators. Sci. Technol. Adv. Mater., 15, 014601(2014).

    [8] D. A. B. Miller. Device requirements for optical interconnects to silicon chips. Proc. IEEE, 97, 1166-1185(2009).

    [9] D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink. Relation between electroabsorption in bulk semiconductors and in quantum wells: the quantum-confined Franz-Keldysh effect. Phys. Rev. B, 33, 6976-6982(1986).

    [10] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus. Band-edge electroabsorption in quantum well structures: the quantum-confined stark effect. Phys. Rev. Lett., 53, 2173-2176(1984).

    [11] J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, J. Michel. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nat. Photonics, 2, 433-437(2008).

    [12] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor. Nature, 427, 615-618(2004).

    [13] V. J. Sorger, N. D. Lanzillotti-Kimura, R. M. Ma, X. Zhang. Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics, 1, 17-22(2012).

    [14] G. T. Reed, G. Mashanovich, F. Y. Gardes, D. J. Thomson. Silicon optical modulators. Nat. Photonics, 4, 518-526(2010).

    [15] M. Cardona, F. H. Pollak. Energy-band structure of Germanium and Silicon: the k · p method. Phys. Rev., 142, 530-543(1966).

    [16] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 474, 64-67(2011).

    [17] R. Yu, V. Pruneri, F. J. G. de Abajo. Resonant visible light modulation with graphene. ACS Photon., 2, 550-558(2015).

    [18] M. Fleischhauer, A. Imamoglu, J. P. Marangos. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys., 77, 633-673(2005).

    [19] K.-J. Boller, A. Imamolu, S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett., 66, 2593-2596(1991).

    [20] L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature, 397, 594-598(1999).

    [21] M. Fleischhauer, M. D. Lukin. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett., 84, 5094-5097(2000).

    [22] A. V. Turukhin, V. S. Sudarhanam, M. S. Shahriar, J. A. Musser, B. S. Ham, P. R. Hemmer. Observation of ultraslow and stored light pulses in a solid. Phys. Rev. Lett., 88, 023602(2001).

    [23] M. Bajcsy, S. Hofferberth, V. Balic, T. Peyronel, M. Hafezi, A. S. Zibrov, V. Vuletic, M. D. Lukin. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett., 102, 203902(2009).

    [24] V. Venkataraman, K. Saha, P. Londero, A. L. Gaeta. Few-photon all-optical modulation in a photonic band-gap fiber. Phys. Rev. Lett., 107, 193902(2011).

    [25] S. E. Harris, Y. Yamamoto. Photon switching by quantum interference. Phys. Rev. Lett., 81, 3611-3614(1998).

    [26] M. Yan, E. G. Rickey, Y. Zhu. Observation of absorptive photon switching by quantum interference. Phys. Rev. A, 64, 041801(2001).

    [27] M. Albert, A. Dantan, M. Drewsen. Cavity electromagnetically induced transparency and all-optical switching using ion Coulomb crystals. Nat. Photonics, 5, 633-636(2011).

    [28] L. G. Qin, Z. Y. Wang, G. W. Lin, J. Y. Zhao, S. Q. Gong. Electrically controlled quantum memories with a cavity and electro-mechanical system. IEEE J. Quantum Electron., 52, 9300106(2016).

    [29] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [30] G. Nikoghosyan, M. Fleischhauer. Photon-number selective group delay in cavity induced transparency. Phys. Rev. Lett., 105, 013601(2010).

    [31] A. Javan, O. Kocharovskaya, H. Lee, M. O. Scully. Narrowing of electromagnetically induced transparency resonance in a Doppler-broadened medium. Phys. Rev. A, 66, 013805(2002).

    [32] S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer. Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature, 460, 724-727(2009).

    [33] M. Fleischhauer, M. D. Lukin. Quantum memory for photons: dark-state polaritons. Phys. Rev. A, 65, 022314(2002).

    [34] Y.-Q. Li, M. Xiao. Transient properties of an electromagnetically induced transparency in three-level atoms. Opt. Lett., 20, 1489-1491(1995).

    [35] S. R. de Echaniz, A. D. Greentree, A. V. Durrant, D. M. Segal, J. P. Marangos, J. A. Vaccaro. Observation of transient gain without population inversion in a laser-cooled rubidium Λ system. Phys. Rev. A, 64, 055801(2001).

    [36] H. X. Chen, A. V. Durrant, J. P. Marangos, J. A. Vaccaro. Observation of transient electromagnetically induced transparency in a rubidium system. Phys. Rev. A, 58, 1545-1548(1998).

    [37] S. E. Harris, Z.-F. Luo. Preparation energy for electromagnetically induced transparency. Phys. Rev. A, 52, R928(1995).

    [38] K. Aihara, G. Matsumoto, Y. Ikegaya. Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator. J. Theoret. Biol., 109, 249-269(1984).

    [39] S. Gröblacher. Quantum Opto-Mechanics with Micromirrors(2012).

    [40] K. Ying, Y. Niu, D. Chen, H. Cai, R. Qu, S. Gong. White light cavity via modification of linear and nonlinear dispersion in an N-type atomic system. Opt. Commun., 342, 189-192(2015).

    [41] C. Ding, J. Li, Z. Zhan, X. Yang. Two-dimensional atom localization via spontaneous emission in a coherently driven five-level M-type atomic system. Phys. Rev. A, 83, 063834(2011).

    [42] D. Barettin, J. Houmark, B. Lassen, M. Willatzen, T. R. Nielsen, J. Mørk, A.-P. Jauho. Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures. Phys. Rev. B, 80, 235304(2009).

    [43] Z. Wang, B. Yu, S. Zhen, X. Wu. Large refractive index without absorption via quantum interference in a semiconductor quantum well. J. Lumin., 134, 272-276(2013).

    [44] M. Ö. Oktel, Ö. E. Müstecaplıoğlu. Electromagnetically induced left-handedness in a dense gas of three-level atoms. Phys. Rev. A, 70, 053806(2004).

    [45] Q. Thommen, P. Mandel. Electromagnetically induced left handedness in optically excited four-level atomic media. Phys. Rev. Lett., 96, 053601(2006).

    Li-Guo Qin, Zhong-Yang Wang, Shang-Qing Gong, Hong-Yang Ma. Electro-optic waveform interconnect based on quantum interference[J]. Photonics Research, 2017, 5(5): 481
    Download Citation