
- Photonics Research
- Vol. 10, Issue 3, 834 (2022)
Abstract
1. INTRODUCTION
The optical Kerr effect (OKE) is one of the nonlinear optical (NLO) phenomena observed in dielectric or semiconducting materials, where the refractive index changes in response to intense laser light. The change of refractive index (or so-called nonlinear refractive index,
One such strategy is to exploit excitonic effects of 2D materials (or so-called 2D excitons). The 2D exciton can be naturally formed by optical coupling excitonic transitions in layered materials where the spatial confinement and the reduced screening effect give rise to enhanced Coulomb interactions. Since the excitons are confined in a plane that is thinner than their Bohr radius in most 2D semiconductors [13–15], quantum confinement enhances the exciton binding energy [16] and alters materials’ optical properties [17]. In particular, the 2D exciton layered materials manifest strong and ultrafast light–matter coupling on nonlinear optical responses in the visible to the near-infrared spectra [18,19]. For instance, a single crystal of Ruddlesden–Popper perovskite (RPP) in the 2D structure has been reported to possess an
In this paper, we develop a simple model on OKEs originated from 2D exciton-associated 2PA. By utilizing the second-order quantum perturbation theory for two-photon transitions among the energy states of 2D excitons and then performing the Kramers–Kronig (K-K) transformation, the nonlinear refractive index (
Sign up for Photonics Research TOC. Get the latest issue of Photonics Research delivered right to you!Sign up now
2. THEORY
The nonlinear refractive index (
For a novel K-K transformation, two distinct photon energies for 2PA are needed, i.e.,
Figure 1.Schematic of the optical Kerr effect (self-focusing or -defocusing) induced by 2PA resonant with the exciton energy (
By substituting Eq. (2) into Eq. (1), the
Because the equivalence of
3. RESULTS AND DISCUSSION
Note that Eq. (5) interprets the normalized
Figure 2.Comparison of the normalized
To validate our model, the calculated
In the near-resonance region, there is a large discrepancy with the experimental data of monolayer (or few-layer) TMDs [30–32], which is attributed to the spin-split-off excitonic states. Experimental evidence has shown monolayer TMDs with the spin-orbital splitting possess a pair of generated excitons (as either the A-exciton or B-exciton [35]) transitioning at the
Figure 3 shows good agreement between Eq. (6) and the experimental data.
Figure 3.Normalized
Figure 4 compares calculated
Figure 4.Calculated
With the effects of 2D excitons, further enhancement of the OKE is predicted at lower temperature. As derived from Eq. (4) or (6),
Figure 5.(a) Calculated
Indeed, in our model, the absolute magnitude of the nonlinear refractive index is enhanced through two-photon transitions, when the photon energy approaches
Nonlinear Coefficients and FOMs of Materials at 1550 nm
Material | Ref. | ||||
---|---|---|---|---|---|
2D RPP ( | 105.5 | 96.3 | 1.02 | 0.14 | This work |
2D RPP ( | 22.9 | 9.9 | 0.27 | 0.07 | This work |
2D RPP ( | 7.2 | 1.6 | 0.12 | 0.03 | This work |
2D RPP ( | 1.3 | 0.3 | 0.03 | 0.04 | This work |
2D | 1.5 | 5.6 | 0.008 | 0.56 | This work |
2D | 19.1 | 212.5 | 0.07 | 1.72 | This work |
2D | 2.7 | 7.7 | 0.02 | 0.45 | This work |
2D | 15.8 | 79.1 | 0.06 | 0.78 | This work |
Multilayer graphene | −800 | 900 | 0.20 | 1.40 | [ |
0.045 | 0.79 | – | 0.37 | [ | |
GaAs | 0.16 | 10.2 | – | 0.10 | [ |
GaAs/AlAs superlattice | 0.15 | 1.5 | – | 0.87 | [ |
Conjugated 3,3’-bipyridine derivative | 0.0046 | [ |
4. CONCLUSION
In summary, based on the K-K transformation of exciton-associated 2PA, we have successfully developed an admirably succinct model to predict the OKE of 2D semiconductors. In our model, all the parameters are measurable experimentally, except for the linewidth of
APPENDIX A: DERIVATION OF n2 DISPERSION FOR 2D SEMICONDUCTORS WITH TWO EXCITONS
In monolayer transition metal dichalcogenides (TMDs), there are two distinctive excitons: exciton A and exciton B. For these 2D semiconductors with the two-exciton feature, by a quantum perturbation theory associated with 2D excitons, we have derived the wavelength-dependent, degenerate 2PA coefficient as [
Here, we assume that
Normalized Transition Dipole Moments for 2PA Transitions
2PA Transitions | |
---|---|
1 | |
0 | |
0.41 | |
0 | |
0.24 | |
0.16 | |
0.11 |
Note: Transition dipole moments are normalized by
The 2PA coefficient from Eq. (
By substituting Eq. (
Because the equivalence of
Here,
Parameters Used in the Calculation of
RPP ( | 2.11 | 15.3 | 2.74 | 0.35 | 2.39 | 2.59 | 0.979 | 0.15 | N.A. | N.A. | |
RPP ( | 2.21 | 17.1 | 2.51 | 0.26 | 2.25 | 2.37 | 3.05 | 0.15 | N.A. | N.A. | |
RPP ( | 2.27 | 17.9 | 2.27 | 0.16 | 2.11 | 2.14 | 5.50 | 0.15 | N.A. | N.A. | |
RPP ( | 2.32 | 22.0 | 2.14 | 0.15 | 1.99 | 2.00 | 16.7 | 0.15 | N.A. | N.A. | |
1.84 | 9.3 | 2.70 | 0.80 | 1.90 | 2.50 | 1.67 | 0.075 | 0.939 | 2 | ||
2.10 | 10.1 | 2.43 | 0.66 | 1.77 | 2.21 | 8.40 | 0.075 | 0.909 | 2 | ||
1.82 | 10.3 | 2.92 | 0.82 | 2.10 | 2.73 | 3.17 | 0.075 | 0.867 | 4 | ||
1.84 | 10.5 | 2.57 | 0.79 | 1.78 | 2.35 | 12.4 | 0.075 | 0.848 | 4 | ||
h-BN | 2.00 | 6.1 | 5.81 | 0.92 | 5.50 | 5.69 | 1.00 | 0.15 | N.A. | N.A. | |
BP | 2.50 | 20.2 | 1.60 | 0.50 | 1.10 | 1.20 | 20.0 | 0.15 | N.A. | N.A. |
Note that no fitting parameter was used in plotting the theoretical curves, except for the linewidth, and the experimental data of
APPENDIX B: SIMPLIFICATION OF n2 DISPERSION OF 2D SEMICONDUCTORS WITH ONE EXCITON
For 2D materials without the spin-orbital splitting, the 2PA coefficient from Eq. (
Here, we define a parameter
Equation (
APPENDIX C: EXPERIMENTAL DATA OF n2 VALUES
Extracted
Ref. | |||||
---|---|---|---|---|---|
RPP ( | 0.41 | 0.16 | 2700 | 2.11 | [ |
RPP ( | 0.45 | 0.11 | 2700 | 2.21 | [ |
RPP ( | 0.39 | 0.048 | 2700 | 2.41 | [ |
RPP ( | 0.40 | 0.053 | 2700 | 2.32 | [ |
−1.96 | −1.45 | 800 | 1.84 | [ | |
350 | 260.02 | 800 | 1.84 | [ | |
1.88 | 1.40 | 1064 | 1.84 | [ | |
−0.21 | −0.15 | 1064 | 1.84 | [ | |
−0.12 | −0.034 | 1064 | 2.10 | [ | |
0.20 | 0.058 | 1000 | 2.10 | [ | |
−1.10 | −1.02 | 800 | 1.82. | [ | |
0.81 | 0.76 | 800 | 1.82 | [ | |
58.30 | 54.55 | 1064 | 1.82 | [ | |
128 | 119.77 | 1040 | 1.82 | [ | |
−18.70 | −12.27 | 1040 | 1.84 | [ | |
h-BN | 0.12 | 0.30 | 1064 | 2.0 | [ |
BP | 860 | 26.73 | 800 | 2.5 | [ |
APPENDIX D: TEMPERATURE DEPENDENCE OF NONLINEAR REFRACTIVE INDEX
According to Eq. (
Figure 6.Nonlinear refractive index,
Figure 7.Nonlinear refractive index,
APPENDIX E: FIGURES OF MERIT OF MONOLAYER RPPS AND TMDS
To evaluate the OKE efficiency for all-optical switching devices, we have calculated the figures of merit (FOMs) for monolayer RPPs and TMDs in the wavelength range from 600 to 1700 nm. Results are displayed in Fig.
Figure 8.(a)
References
[1] R. W. Boyd. Nonlinear Optics(2020).
[2] A. Newell. Nonlinear Optics(2018).
[3] X. Hu, P. Jiang, C. Ding, H. Yang, Q. Gong. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nat. Photonics, 2, 185-189(2008).
[4] L. Deng, E. W. Hagley, J. Wen, M. Trippenbach, Y. Band, P. S. Julienne, J. E. Simsarian, K. Helmerson, S. L. Rolston, W. D. Phillips. Four-wave mixing with matter waves. Nature, 398, 218-220(1999).
[5] K. Inoue, T. Mukai, T. Saitoh. Nearly degenerate four-wave mixing in a traveling-wave semiconductor laser amplifier. Appl. Phys. Lett., 51, 1051-1053(1987).
[6] K. J. A. Ooi, D. K. T. Ng, T. Wang, A. K. L. Chee, S. K. Ng, Q. Wang, L. K. Ang, A. M. Agarwal, L. C. Kimerling, D. T. H. Tan. Pushing the limits of CMOS optical parametric amplifiers with USRN: Si7N3 above the two-photon absorption edge. Nat. Commun., 8, 13878(2017).
[7] T. Brabec, C. Spielmann, P. F. Curley, F. Krausz. Kerr lens mode locking. Opt. Lett., 17, 1292-1294(1992).
[8] X. Liu, D. Popa, N. Akhmediev. Revealing the transition dynamics from
[9] M. J. Weber, D. Milam, W. L. Smith. Nonlinear refractive index of glasses and crystals. Opt. Eng., 17, 175463(1978).
[10] R. Adair, L. L. Chase, S. A. Payne. Nonlinear refractive index of optical crystals. Phys. Rev. B, 39, 3337-3350(1989).
[11] X. J. Zhang, W. Ji, S. H. Tang. Determination of optical nonlinearities and carrier lifetime in ZnO. J. Opt. Soc. Am. B, 14, 1951-1955(1997).
[12] M. Sheik-Bahae, D. J. Hagan, E. W. Van Stryland. Dispersion and band-gap scaling of the electronic Kerr effect in solids associated with two-photon absorption. Phys. Rev. Lett., 65, 96-99(1990).
[13] T. Olsen, S. Latini, F. Rasmussen, K. S. Thygesen. Simple screened hydrogen model of excitons in two-dimensional materials. Phys. Rev. Lett., 116, 056401(2016).
[14] G. Zhang, A. Chaves, S. Huang, F. Wang, Q. Xing, T. Low, H. Yan. Determination of layer-dependent exciton binding energies in few-layer black phosphorus. Sci. Adv., 4, 9977(2018).
[15] B. Arnaud, S. Lebègue, P. Rabiller, M. Alouani. Huge excitonic effects in layered hexagonal boron nitride. Phys. Rev. Lett., 96, 026402(2006).
[16] Z. Jiang, Z. Liu, Y. Li, W. Duan. Scaling universality between band gap and exciton binding energy of two-dimensional semiconductors. Phys. Rev. Lett., 118, 266401(2017).
[17] K. F. Mak, D. Xiao, J. Shan. Light–valley interactions in 2D semiconductors. Nat. Photonics, 12, 451-460(2018).
[18] C. Trovatello, F. Katsch, N. J. Borys, M. Selig, K. Yao, R. Borrego-Varillas, F. Scotognella, I. Kriegel, A. Yan, A. Zettl, P. J. Schuck, A. Knorr, G. Cerullo, S. Dal Conte. The ultrafast onset of exciton formation in 2D semiconductors. Nat. Commun., 11, 5277(2020).
[19] A. Autere, H. Jussila, Y. Dai, Y. Wang, H. Lipsanen, Z. Sun. Nonlinear optics: nonlinear optics with 2D layered materials. Adv. Mater., 30, 1870172(2018).
[20] I. Abdelwahab, P. Dichtl, G. Grinblat, K. Leng, X. Chi, I.-H. Park, M. P. Nielsen, R. F. Oulton, K. P. Loh, S. A. Maier. Giant and tunable optical nonlinearity in single-crystalline 2D Perovskites due to excitonic and plasma effects. Adv. Mater., 31, 1902685(2019).
[21] N. Dong, Y. Li, S. Zhang, N. McEvoy, R. Gatensby, G. S. Duesberg, J. Wang. Saturation of two-photon absorption in layered transition metal dichalcogenides: experiment and theory. ACS Photon., 5, 1558-1565(2018).
[22] Y. Yu, Y. Yu, C. Xu, A. Barrette, K. Gundogdu, L. Cao. Fundamental limits of exciton-exciton annihilation for light emission in transition metal dichalcogenide monolayers. Phys. Rev. B, 93, 201111(2016).
[23] A. Tanaka, N. J. Watkins, Y. Gao. Hot-electron relaxation in the layered semiconductor 2H-MoS2 studied by time-resolved two-photon photoemission spectroscopy. Phys. Rev. B, 67, 113315(2003).
[24] H. H. Fang, J. Yang, S. Adjokatse, E. Tekelenburg, M. E. Kamminga, H. Duim, J. Ye, G. R. Blake, J. Even, M. A. Loi. Band-edge exciton fine structure and exciton recombination dynamics in single crystals of layered hybrid perovskites. Adv. Funct. Mater., 30, 1907979(2020).
[25] F. O. Saouma, C. C. Stoumpos, J. Wong, M. G. Kanatzidis, J. I. Jang. Selective enhancement of optical nonlinearity in two-dimensional organic-inorganic lead iodide perovskites. Nat. Commun., 8, 742(2017).
[26] B. Guo, Q. L. Xiao, S. H. Wang, H. Zhang. 2D layered materials: synthesis, nonlinear optical properties, and device applications. Laser Photon. Rev., 13, 1800327(2019).
[27] G. Grinblat, I. Abdelwahab, M. P. Nielsen, P. Dichtl, K. Leng, R. F. Oulton, K. P. Loh, S. A. Maier. Ultrafast all-optical modulation in 2D hybrid perovskites. ACS Nano, 13, 9504-9510(2019).
[28] F. Zhou, J. H. Kua, S. Lu, W. Ji. Two-photon absorption arises from two-dimensional excitons. Opt. Express, 26, 16093-16101(2018).
[29] F. Zhou, I. Abdelwahab, K. Leng, K. P. Loh, W. Ji. 2D perovskites with giant excitonic optical nonlinearities for high-performance sub-bandgap photodetection. Adv. Mater., 31, 1904155(2019).
[30] T. Neupane, B. Tabibi, F. J. Seo. Spatial self-phase modulation in WS2 and MoS2 atomic layers. Opt. Mater. Express, 10, 831-842(2020).
[31] K. Wang, Y. Feng, C. Chang, J. Zhan, C. Wang, Q. Zhao, J. N. Coleman, L. Zhang, W. J. Blau, J. Wang. Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale, 6, 10530-10535(2014).
[32] X. Zheng, Y. Zhang, R. Chen, Z. Xu, T. Jiang. Z-scan measurement of the nonlinear refractive index of monolayer WS2. Opt. Express, 23, 15616-15623(2015).
[33] P. Kumbhakar, A. K. Kole, C. S. Tiwary, S. Biswas, S. Vinod, J. Taha-Tijerina, U. Chatterjee, P. M. Ajayan. Nonlinear optical properties and temperature-dependent UV-vis absorption and photoluminescence emission in 2D hexagonal boron nitride nanosheets. Adv. Opt. Mater., 3, 828-835(2015).
[34] X. Zheng, R. Chen, G. Shi, J. Zhang, Z. Xu, T. Jiang. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements. Opt. Lett., 40, 3480-3483(2015).
[35] T. C. Berkelbach, M. S. Hybertsen, D. R. Reichman. Theory of neutral and charged excitons in monolayer transition metal dichalcogenides. Phys. Rev. B, 88, 045318(2013).
[36] J. Wang, A. Coillet, O. Demichel, Z. Wang, D. Rego, A. Bouhelier, P. Grelu, B. Cluzel. Saturable plasmonic metasurfaces for laser mode locking. Light Sci. Appl., 9, 50(2020).
[37] G. Demetriou, H. T. Bookey, F. Biancalana, E. Abraham, Y. Wang, W. Ji, A. K. Kar. Nonlinear optical properties of multilayer graphene in the infrared. Opt. Express, 24, 13033-13043(2016).
[38] F. Liu, X. Zhao, X. Q. Yan, X. Xin, Z. B. Liu, J. G. Tian. Measuring third-order susceptibility tensor elements of monolayer MoS2 using the optical Kerr effect method. Appl. Phys. Lett., 113, 051901(2018).
[39] H. Pan, H. Chu, Y. Li, S. Zhao, D. Li. Comprehensive study on the nonlinear optical properties of few-layered MoSe2 nanosheets at 1 μm. J. Alloys Compd., 806, 52-57(2019).
[40] S. Bikorimana, P. Lama, A. Walser, R. Dorsinville, S. Anghel, A. Mitioglu, A. Micu, L. Kulyuk. Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2. Opt. Express, 24, 20685-20695(2016).
[41] N. Dong, Y. Li, S. Zhang, N. L. McEvoy, X. Zhang, Y. Cui, L. Zhang, G. S. Duesberg, J. Wang. Dispersion of nonlinear refractive index in layered WS2 and WSe2 semiconductor films induced by two-photon absorption. Opt. Lett., 41, 3936-3939(2016).
[42] H. C. Woo, J. W. Choi, J. Shin, S. H. Chin, M. H. Ann, C. L. Lee. Temperature-dependent photoluminescence of CH3NH3PbBr3 perovskite quantum dots and bulk counterparts. J. Phys. Chem. Lett., 9, 4066-4074(2018).
[43] Q. Chen, E. H. Sargent, N. Leclerc, A. J. Attias. Wavelength dependence and figures of merit of ultrafast third-order optical nonlinearity of a conjugated 3, 3′-bipyridine derivative. Appl. Opt., 42, 7235-7241(2003).
[44] F. Chérioux, A. J. Attias, H. Maillotte. Symmetric and asymmetric conjugated 3, 3′-bipyridine derivatives as a new class of third-order NLO chromophores with an enhanced non-resonant, nonlinear refractive index in the picosecond range. Adv. Funct. Mater., 12, 203-208(2002).
[45] M. Dinu, F. Quochi, H. Garcia. Third-order nonlinearities in silicon at telecom wavelength. Appl. Phys. Lett., 82, 2954-2956(2003).
[46] S. J. Wagner, J. Meier, A. S. Helmy, J. S. Aitchison, M. Sorel, D. C. Hutchings. Polarization-dependent nonlinear refraction and two-photon absorption in GaAs/AlAs superlattice waveguides below the half-bandgap. J. Opt. Soc. Am. B, 24, 1557-1563(2007).
[47] T. K. Fryett, A. Zhan, A. Majumdar. Phase-matched nonlinear optics via patterning layered materials. Opt. Lett., 42, 3586-3589(2017).
[48] D. Pan, Y. Fu, N. Spitha, Y. Zhao, C. R. Roy, D. J. Morrow, D. D. Kohler, J. C. Wright, S. Jin. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden-Popper halide perovskites. Nat. Nanotechnol., 16, 159-165(2021).
[49] F. Withers, O. Del Pozo-Zamudio, A. Mishchenko, A. P. Rooney, A. Gholinia, K. Watanabe, T. Taniguchi, S. J. Haigh, A. K. Geim, A. I. Tartakovskii, K. S. Novoselov. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater., 14, 301-306(2015).
[50] S. Uryu, H. Ajiki, T. Ando. Excitonic two-photon absorption in semiconducting carbon nanotubes within an effective-mass approximation. Phys. Rev. B, 78, 115414(2008).
[51] O. B. Aslan, M. Deng, T. F. Heinz. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B, 98, 115308(2018).
[52] E. Courtade, B. Han, S. Nakhaie, C. Robert, X. Marie, P. Renucci, T. Taniguchi, K. Watanabe, L. Geelhaar, J. M. J. Lopes, B. Urbaszek. Spectrally narrow exciton luminescence from monolayer MoS2 and MoSe2 exfoliated onto epitaxially grown hexagonal BN. Appl. Phys. Lett., 113, 032106(2018).
[53] A. Segura, L. Artús, R. Cuscó, T. Taniguchi, G. Cassabois, B. Gil. Natural optical anisotropy of h-BN: highest giant birefringence in a bulk crystal through the mid-infrared to ultraviolet range. Phys. Rev. Mater., 2, 024001(2018).
[54] T. C. Doan, J. Li, J. Y. Lin, H. X. Jiang. Bandgap and exciton binding energies of hexagonal boron nitride probed by photocurrent excitation spectroscopy. Appl. Phys. Lett., 109, 122101(2016).
[55] X. Wang, S. Lan. Optical properties of black phosphorus. Adv. Opt. Photon., 8, 618-655(2016).
[56] I. Abdelwahab, G. Grinblat, K. Leng, Y. Li, X. Chi, A. Rusydi, S. A. Maier, K. Ploh. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano, 12, 644-650(2018).
[57] K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett., 105, 136805(2010).

Set citation alerts for the article
Please enter your email address