• Photonics Research
  • Vol. 7, Issue 4, 381 (2019)
Xuanhu Chen, Fangfang Ren, Shulin Gu, and Jiandong Ye*
Author Affiliations
  • School of Electronics Science and Engineering, Nanjing University, Nanjing 210093, China
  • show less
    DOI: 10.1364/PRJ.7.000381 Cite this Article Set citation alerts
    Xuanhu Chen, Fangfang Ren, Shulin Gu, Jiandong Ye. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381 Copy Citation Text show less
    References

    [1] International Standard. Space Environment (Natural and Artificial)—Process for Determining Solar Irradiances(2007).

    [2] K. Osamura, K. Nakajima, Y. Murakami, P. H. Shingu, A. Ohtsuki. Fundamental absorption edge in GaN, InN and their alloys. Solid State Commun., 11, 617-621(1972).

    [3] J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, Y. D. Ye. Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition. J. Cryst. Growth, 283, 279-285(2005).

    [4] C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, M. Edoff. Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys. Phys. Rev. Lett., 97, 146403(2006).

    [5] F. Vigue, E. Tournie, J. P. Faurie. Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection. IEEE J. Quantum Electron., 37, 1146-1152(2001).

    [6] H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, M. Burns. Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies. J. Appl. Phys., 76, 1363-1398(1994).

    [7] X. Chen, H. Zhu, J. Cai, Z. Wu. High-performance 4H-SiC-based ultraviolet p-i-n photodetector. J. Appl. Phys., 102, 024505(2007).

    [8] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, S. L. Gilbert. Epitaxially grown AlN and its optical band gap. J. Appl. Phys., 44, 292-296(1973).

    [9] S. Salvatori, M. C. Rossi, F. Galluzzi, E. Pace. Solar-blind UV-photodetector based on polycrystalline diamond films: basic design principle and comparison with experimental results. Mater. Sci. Eng. B, 46, 105-111(1997).

    [10] Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, C.-X. Shan. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging. J. Mater. Chem. C, 6, 5727-5732(2018).

    [11] W. Zheng, R. Lin, Z. Zhang, F. Huang. Vacuum-ultraviolet photodetection in few-layered h-BN. ACS Appl. Mater. Interfaces, 10, 27116-27123(2018).

    [12] T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M. Higashiwaki. Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy. Jpn. J. Appl. Phys., 54, 112601(2015).

    [13] K. Akaiwa, S. Fujita. Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition. Jpn. J. Appl. Phys., 51, 070203(2012).

    [14] T. Hitora, S. Fujita, M. Oda, K. Kaneko. Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices. Jpn. J. Appl. Phys., 55, 1202a3(2016).

    [15] D. Li, K. Jiang, X. Sun, C. Guo. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon., 10, 43-110(2018).

    [16] M. Kim, J.-H. Seo, U. Singisetti, Z. Ma. Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond. J. Mater. Chem. C, 5, 8338-8354(2017).

    [17] J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, J. A. Simmons. Ultrawide-bandgap semiconductors: research opportunities and challenges. Adv. Electron. Mater., 4, 1600501(2018).

    [18] Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, Z. H. Li. High-gain AlGaN solar-blind avalanche photodiodes. IEEE Electron Device Lett., 35, 372-374(2014).

    [19] J. Yu, C. X. Shan, J. S. Liu, X. W. Zhang, B. H. Li, D. Z. Shen. MgZnO avalanche photodetectors realized in Schottky structures. Phys. Status Solidi RRL, 7, 425-428(2013).

    [20] K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki. Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy. Jpn. J. Appl. Phys., 46, L307-L310(2007).

    [21] M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, A. Bandoh. High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio. Jpn. J. Appl. Phys., 45, 8639-8643(2006).

    [22] W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, H. Shen. Compositionally-tuned epitaxial cubic MgxZn1−x O on Si(100) for deep ultraviolet photodetectors. Appl. Phys. Lett., 82, 3424-3426(2003).

    [23] A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, M. Pillon. Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition. Appl. Phys. Lett., 86, 193509(2005).

    [24] A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S. Yamakoshi. High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth. Jpn. J. Appl. Phys., 55, 1202a2(2016).

    [25] K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, S. Yamakoshi. Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy. Appl. Phys. Express, 5, 035502(2012).

    [26] A. Rose. Concepts in Photoconductivity and Allied Problems(1963).

    [27] E. Monroy, F. Omnès, F. Calle. Wide-bandgap semiconductor ultraviolet photodetectors. Semicond. Sci. Technol., 18, R33-R51(2003).

    [28] X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, A. J. Heeger. High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm. Science, 325, 1665-1667(2009).

    [29] R. J. Keyes. Optical and Infrared Detectors, Topics in Applied Physics(1977).

    [30] M. Razeghi, A. Rogalski. Semiconductor ultraviolet detectors. J. Appl. Phys., 79, 7433-7473(1996).

    [31] P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, M. Razeghi. Kinetics of photoconductivity in n-type GaN photodetector. Appl. Phys. Lett., 67, 3792-3794(1995).

    [32] S. M. Sze, M.-K. Lee. Semiconductor Devices: Physics and Technology(2012).

    [33] M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, R. Fornari. Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3. Appl. Phys. Lett., 101, 132106(2012).

    [34] S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, F.-L. Schein, H. Frenzel, M. Grundmann. Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals. Appl. Phys. Express, 8, 121102(2015).

    [35] R. Hackam, P. Harrop. Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes. IEEE Trans. Electron Devices, 19, 1231-1238(1972).

    [36] W. Schottky, E. Spenke. Quantitative treatment of the space charge and boundary-layer theory of the crystal rectifier. Wiss. Veroff. Siemens-Werken, 18, 225-291(1939).

    [37] H. A. Bethe. Theory of the Boundary Layer of Crystal Rectifiers(1942).

    [38] A. M. Cowley, S. M. Sze. Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys., 36, 3212-3220(1965).

    [39] C. R. Crowell, S. M. Sze. Current transport in metal-semiconductor barriers. Solid-State Electron., 9, 1035-1048(1966).

    [40] C. Y. Wu. Interfacial layer-thermionic-diffusion theory for the Schottky barrier diode. J. Appl. Phys., 53, 5947-5950(1982).

    [41] T. Hashizume, J. Kotani, H. Hasegawa. Leakage mechanism in GaN and AlGaN Schottky interfaces. Appl. Phys. Lett., 84, 4884-4886(2004).

    [42] E. J. Miller, E. T. Yu, P. Waltereit, J. S. Speck. Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy. Appl. Phys. Lett., 84, 535-537(2004).

    [43] O. Katz, V. Garber, B. Meyler, G. Bahir, J. Salzman. Gain mechanism in GaN Schottky ultraviolet detectors. Appl. Phys. Lett., 79, 1417-1419(2001).

    [44] O. Katz, G. Bahir, J. Salzman. Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors. Appl. Phys. Lett., 84, 4092-4094(2004).

    [45] T. Bruno, W. Haynes, D. Lide. CRC Handbook of Chemistry and Physics(2016).

    [46] S. N. Mohammad. Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN. J. Appl. Phys., 95, 7940-7953(2004).

    [47] A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, G. H. Jessen. β-Ga2O3 MOSFETs for radio frequency operation. IEEE Electron Device Lett., 38, 790-793(2017).

    [48] K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi. Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts. Appl. Phys. Express, 6, 086502(2013).

    [49] M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki. Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V. IEEE Electron Device Lett., 37, 212-215(2016).

    [50] Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, H. G. Xing. Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV. IEEE Electron Device Lett., 39, 869-872(2018).

    [51] M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi. Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts. IEEE International Electron Devices Meeting(2013).

    [52] M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, M. Higashiwaki. Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain. Appl. Phys. Express, 10, 041101(2017).

    [53] K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, U. Singisetti. Ga2O3 MOSFETs using spin-on-glass source/drain doping technology. IEEE Electron Device Lett., 38, 513-516(2017).

    [54] Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, S. Rajan. Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors. Appl. Phys. Lett., 112, 233503(2018).

    [55] S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan. Delta-doped β-gallium oxide field-effect transistor. Appl. Phys. Express, 10, 051102(2017).

    [56] K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, G. Jessen. Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation. 2017 75th Annual Device Research Conference (DRC), 1-2(2017).

    [57] A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, G. H. Jessen. 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs. IEEE Electron Device Lett., 37, 902-905(2016).

    [58] N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, G. H. Jessen. High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge. Appl. Phys. Lett., 110, 143505(2017).

    [59] P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, I. I. Kravchenko. Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au. AIP Adv., 7, 095313(2017).

    [60] Y. Yao, R. F. Davis, L. M. Porter. Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties. J. Electron. Mater., 46, 2053-2060(2016).

    [61] P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, I. I. Kravchenko. Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers. J. Vac. Sci. Technol. B, 35, 061201(2017).

    [62] T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, M. Kasu. Formation of indium–tin oxide ohmic contacts for β-Ga2O3. Jpn. J. Appl. Phys., 55, 1202b7(2016).

    [63] H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, P. D. Ye. High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450  mA/mm. IEEE Electron Device Lett., 38, 103-106(2017).

    [64] H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, Y. Zhao. A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates. IEEE Trans. Electron Devices, 65, 3507-3513(2018).

    [65] T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, M. A. Olmstead. Band bending and surface defects in β-Ga2O3. Appl. Phys. Lett., 100, 181602(2012).

    [66] S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton. A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3. J. Alloys Compd., 731, 118-125(2018).

    [67] Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer. Appl. Phys. Lett., 98, 131114(2011).

    [68] High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express, 8, 031101(2015).

    [69] Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes. J. Appl. Phys., 119, 103102(2016).

    [70] Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates. IEEE Electron Device Lett., 34, 493-495(2013).

    [71] Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy. Semicond. Sci. Technol., 32, 035004(2017).

    [72] Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals. J. Vac. Sci. Technol. B, 35, 03d113(2017).

    [73] Thermionic emission analysis of TiN and Pt Schottky contacts to β-Ga2O3. ECS J. Solid State Sci. Technol., 6, P165-P168(2017).

    [74] Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes. Jpn. J. Appl. Phys., 55, 1202bb(2016).

    [75] Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures. ECS J. Solid State Sci. Technol., 6, Q3022-Q3025(2016).

    [76] Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3. ECS J. Solid State Sci. Technol., 6, P68-P72(2017).

    [77] Influence of metal choice on (010) β-Ga2O3 Schottky diode properties. Appl. Phys. Lett., 110, 202102(2017).

    [78] Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3. Jpn. J. Appl. Phys., 56, 091101(2017).

    [79] Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes. Appl. Phys. Lett., 110, 142101(2017).

    [80] Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects. Jpn. J. Appl. Phys., 56, 086501(2017).

    [81] Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode. Appl. Phys. Lett., 112, 072103(2018).

    [82] Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy. Appl. Phys. Lett., 108, 133503(2016).

    [83] Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics. Appl. Phys. Lett., 110, 093503(2017).

    [84] 1-kV vertical Ga2O3 field-plated Schottky barrier diodes. Appl. Phys. Lett., 110, 103506(2017).

    [85] Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing. Appl. Phys. Lett., 94, 222102(2009).

    [86] Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition. Phys. Status Solidi A, 211, 40-47(2014).

    [87] First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes. IEEE Electron Device Lett., 38, 783-785(2017).

    [88] Optical absorption and photoconductivity in the band edge of β-Ga2O3. Phys. Rev., 140, A316-A319(1965).

    [89] Anisotropy of electrical and optical properties in β-Ga2O3 single crystals. Appl. Phys. Lett., 71, 933-935(1997).

    [90] Deep-ultraviolet transparent conductive β-Ga2O3 thin films. Appl. Phys. Lett., 77, 4166-4168(2000).

    [91] Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition. Jpn. J. Appl. Phys., 47, 7311-7313(2008).

    [92] First-principles calculations of the near-edge optical properties of β-Ga2O3. Appl. Phys. Lett., 109, 212104(2016).

    [93] Polymorphism of Ga2O3 and the system Ga2O3-H2O. J. Am. Chem. Soc., 74, 719-722(1952).

    [94] Crystal structure of β-Ga2O3. J. Chem. Phys., 33, 676-684(1960).

    [95] First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B, 74, 195123(2006).

    [96] Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction. Chemistry, 19, 2803-2813(2013).

    [97] Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2–xFexO3. J. Chem. Phys., 46, 1862-1865(1967).

    [98] Structures and energetics of Ga2O3 polymorphs. J. Phys. Condens. Matter, 19, 346211(2007).

    [99] Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer. Phys. Status Solidi B, 255, 1700326(2018).

    [100] Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures. Appl. Phys. Lett., 112, 173502(2018).

    [101] Preparation and characterization of mesoporous γ-Ga2O3. Microporous Mesoporous Mater., 40, 35-42(2000).

    [102] Epitaxial growth of γ-Ga2O3 films by mist chemical vapor deposition. J. Cryst. Growth, 359, 60-63(2012).

    [103] Characterization of structural disorder in γ-Ga2O3. J. Phys. Chem. C, 118, 16188-16198(2014).

    [104] Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire. Inorg. Chem., 55, 12079-12084(2016).

    [105] Use of mist chemical vapor deposition to impart ferroelectric properties to ε-Ga2O3 thin films on SnO2/c-sapphire substrates. Mater. Lett., 232, 47-50(2018).

    [106] Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy. J. Appl. Phys., 118, 085301(2015).

    [107] Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy. Phys. Rev. Appl., 8, 054002(2017).

    [108] The real structure of ε-Ga2O3 and its relation to κ-phase. CrystEngComm, 19, 1509-1516(2017).

    [109] Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface. Appl. Phys. Lett., 112, 162101(2018).

    [110] Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition. Jpn. J. Appl. Phys., 55, 1202bc(2016).

    [111] Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD. J. Cryst. Growth, 443, 25-30(2016).

    [112] Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition. Appl. Phys. Lett., 108, 202103(2016).

    [113] Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates. Phys. Status Solidi C, 10, 1592-1595(2013).

    [114] Czochralski grown Ga2O3 crystals. J. Cryst. Growth, 220, 510-514(2000).

    [115] Growth of β-Ga2O3 by the Verneuil technique. J. Am. Ceram. Soc., 47, 470(1964).

    [116] Electron mobility in single- and polycrystalline Ga2O3. J. Appl. Phys., 74, 300-305(1993).

    [117] Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air. J. Cryst. Growth, 447, 36-41(2016).

    [118] Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method. Jpn. J. Appl. Phys., 55, 1202bf(2016).

    [119] Preparation by floating zone method, of refractory oxide monocrystals, in particular of gallium oxide, and study of some of their properties. Rev. Int. Hautes Temp. Refract., 8, 291(1971).

    [120] Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals. Appl. Phys. Lett., 70, 3561-3563(1997).

    [121] Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications. Sol. Energy Mater. Sol. Cells, 66, 369-374(2001).

    [122] Optical spectroscopy study on β-Ga2O3. Jpn. J. Appl. Phys., 41, L622-L625(2002).

    [123] Infrared reflectance and electrical conductivity of β-Ga2O3. Phys. Status Solidi A, 193, 187-195(2002).

    [124] Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses. Solid State Commun., 127, 385-388(2003).

    [125] Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth, 270, 420-426(2004).

    [126] Growth and spectral characterization of β-Ga2O3 single crystals. J. Phys. Chem. Solids, 67, 2448-2451(2006).

    [127] Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn. J. Phys. Chem. Solids, 67, 1656-1659(2006).

    [128] Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys. Status Solidi C, 4, 2310-2313(2007).

    [129] Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing. Thin Solid Films, 516, 5763-5767(2008).

    [130] Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping. Appl. Phys. Lett., 92, 202120(2008).

    [131] Czochralski growth and characterization of β-Ga2O3 single crystals. Cryst. Res. Technol., 45, 1229-1236(2010).

    [132] Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method. ECS J. Solid State Sci. Technol., 6, Q3007-Q3011(2017).

    [133] On the bulk β-Ga2O3 single crystals grown by the Czochralski method. J. Cryst. Growth, 404, 184-191(2014).

    [134] Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method. Jpn. J. Appl. Phys., 47, 8506-8509(2008).

    [135] High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method. J. Alloys Compd., 714, 453-458(2017).

    [136] One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors. CrystEngComm, 19, 5122-5127(2017).

    [137] Flux growth and characterization of β-Ga2O3 single crystals. J. Am. Ceram. Soc., 49, 168-169(1966).

    [138] Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5. J. Cryst. Growth, 13-14, 588-592(1972).

    [139] Segregation coefficients in β-Ga2O3: Cr crystals grown from a B2O3 based flux. J. Cryst. Growth, 132, 335-336(1993).

    [140] Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3. Jpn. J. Appl. Phys., 13, 1578-1582(1974).

    [141] Chemical transport of β-Ga2O3 using chlorine as a transporting agent. J. Mater. Sci., 21, 3430-3434(1986).

    [142] On the chemical transport of gallium oxide in the Ga2O3/N-H-Cl system. J. Cryst. Growth, 79, 421-426(1986).

    [143] Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method. J. Appl. Phys., 110, 063720(2011).

    [144] Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy. Appl. Phys. Lett., 107, 252103(2015).

    [145] Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates. ECS J. Solid State Sci. Technol., 6, Q3040-Q3044(2016).

    [146] Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition. Jpn. J. Appl. Phys., 55, 1202B8(2016).

    [147] Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl. Phys. Express, 10, 041102(2017).

    [148] Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition. Appl. Phys. Lett., 111, 012103(2017).

    [149] Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties. Thin Solid Films, 666, 182-184(2018).

    [150] n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy. Semicond. Sci. Technol., 33, 045001(2018).

    [151] Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Phys. Rev. B, 85, 081109(2012).

    [152] Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3. Phys. Rev. B, 95, 075208(2017).

    [153] On the feasibility of p-type Ga2O3. Appl. Phys. Lett., 112, 032108(2018).

    [154] Donors and deep acceptors in β-Ga2O3. Appl. Phys. Lett., 113, 062101(2018).

    [155] Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals. Appl. Phys. Lett., 103, 041910(2013).

    [156] Anomalous Fe diffusion in Si-ion-implanted β-Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers. Appl. Phys. Lett., 106, 032105(2015).

    [157] Electronic structure and optical property of metal-doped Ga2O3: a first principles study. RSC Adv., 6, 78322-78334(2016).

    [158] Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett., 100, 013504(2012).

    [159] Intrinsic electron mobility limits in β-Ga2O3. Appl. Phys. Lett., 109, 212101(2016).

    [160] Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy. Thin Solid Films, 516, 5768-5771(2008).

    [161] High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes. Appl. Phys. Lett., 104, 203111(2014).

    [162] Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors. Appl. Phys. Lett., 109, 062102(2016).

    [163] Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor. ACS Appl. Mater. Interfaces, 9, 21322-21327(2017).

    [164] β-Ga2O3 nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications. ACS Omega, 2, 7136-7140(2017).

    [165] β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect. Appl. Phys. Lett., 111, 092102(2017).

    [166] Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics. ACS Appl. Mater. Interfaces, 10, 29724-29729(2018).

    [167] Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching. Appl. Phys. Lett., 110, 131901(2017).

    [168] High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes. ACS Photon., 5, 1123-1128(2017).

    [169] Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity. J. Mater. Chem. C, 4, 9245-9250(2016).

    [170] Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake. ECS J. Solid State Sci. Technol., 6, Q79-Q83(2017).

    [171] Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3. Appl. Phys. Lett., 88, 031105(2006).

    [172] Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy. J. Cryst. Growth, 392, 30-33(2014).

    [173] Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE. CrystEngComm, 17, 6744-6752(2015).

    [174] Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy. J. Cryst. Growth, 405, 19-22(2014).

    [175] Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy. Appl. Phys. Express, 8, 015503(2015).

    [176] Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition. Appl. Phys. Lett., 109, 132103(2016).

    [177] Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition. Appl. Phys. Lett., 108, 182105(2016).

    [178] Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface. Appl. Phys. Express, 10, 035701(2017).

    [179] Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett., 111, 023502(2017).

    [180] Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001). Appl. Phys. Express, 8, 011101(2015).

    [181] Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures. ACS Appl. Mater. Interfaces, 9, 36997-37005(2017).

    [182] Crack-free thick (∼5  μm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers. Jpn. J. Appl. Phys., 55, 070304(2016).

    [183] A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique. Jpn. J. Appl. Phys., 57, 02cb18(2018).

    [184] Evolution of oxide semiconductors for novel functional device applications. IEEE 16th International Conference on Nanotechnology, 714-717(2016).

    [185] Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates. MRS Adv., 3, 171-177(2018).

    [186] Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®. Appl. Phys. Express, 9, 021101(2016).

    [187] Mist-CVD grown Sn-doped α-Ga2O3 MESFETs. IEEE Trans. Electron Devices, 62, 3640-3644(2015).

    [188] Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures. Thin Solid Films, 411, 134-139(2002).

    [189] Conducting Si-doped γ-Ga2O3 epitaxial films grown by pulsed-laser deposition. J. Cryst. Growth, 421, 23-26(2015).

    [190] Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution. Appl. Surf. Sci., 389, 205-210(2016).

    [191] Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: the role of exclusion distance at short time scales. Chem. Phys. Lett., 684, 135-140(2017).

    [192] Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states. J. Phys. Chem. C, 121, 9433-9441(2017).

    [193] Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method. Ceram. Int., 42, 2582-2588(2016).

    [194] Gallium oxide nanospheres: effect of the post-annealing treatment. Mater. Lett., 194, 53-57(2017).

    [195] Non-aqueous synthesis of blue light emitting γ-Ga2O3 and c-In2O3 nanostructures from their ethylene glycolate precursors. Mater. Lett., 161, 112-116(2015).

    [196] Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals. J. Am. Chem. Soc., 132, 9250-9252(2010).

    [197] Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Appl. Phys. Lett., 95, 103102(2009).

    [198] Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires. Nanotechnology, 20, 434017(2009).

    [199] Preparation, characterization and formation mechanism of gallium oxide nanowires. Curr. Appl. Phys., 8, 363-366(2008).

    [200] Low-temperature catalytic growth of β-Ga2O3 nanowires using single organometallic precursor. J. Phys. Chem. B, 108, 1838-1843(2004).

    [201] Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires. Mater. Lett., 65, 2281-2283(2011).

    [202] β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor. Appl. Phys. Lett., 87, 222102(2005).

    [203] Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction. ACS Appl. Mater. Interfaces, 8, 4185-4191(2016).

    [204] The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size. J. Cryst. Growth, 311, 1195-1200(2009).

    [205] Catalytic growth of β-Ga2O3 nanowires by arc discharge. Adv. Mater., 12, 746-750(2000).

    [206] Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition. J. Cryst. Growth, 396, 24-32(2014).

    [207] Nanophotonic switch: gold-in-Ga2O3 peapod nanowires. Nano Lett., 8, 3081-3085(2008).

    [208] Synthesis of β-Ga2O3 nanowires by laser ablation. J. Phys. Chem. B, 106, 9536-9539(2002).

    [209] Preparation and electrical properties of ultrafine Ga2O3 nanowires. J. Phys. Chem. B, 110, 796-800(2006).

    [210] Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation. Nanotechnology, 24, 055401(2013).

    [211] Gallium-assisted growth of flute-like MgO nanotubes, Ga2O3-filled MgO nanotubes, and MgO/Ga2O3 co-axial nanotubes. Nanotechnology, 20, 075602(2009).

    [212] GaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst. J. Vac. Sci. Technol. B, 26, 1841-1847(2008).

    [213] Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport. Cryst. Growth Des., 6, 1936-1941(2006).

    [214] Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire. Semicond. Sci. Technol., 32, 085012(2017).

    [215] Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires. J. Phys. D, 50, 035302(2017).

    [216] Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques. J. Phys. D, 47, 435101(2014).

    [217] The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates. Nanotechnology, 19, 155604(2008).

    [218] Synthesis of gallium oxide nanowires and their electrical properties. Microelectron. Eng., 85, 1613-1615(2008).

    [219] Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires. Appl. Phys. Lett., 78, 3202-3204(2001).

    [220] Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method. Semicond. Sci. Technol., 31, 115003(2016).

    [221] Resonant cavity modes in gallium oxide microwires. Appl. Phys. Lett., 100, 261910(2012).

    [222] Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires. J. Phys. Chem. C, 117, 3036-3045(2013).

    [223] Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route. Mater. Sci. Eng. B, 140, 123-127(2007).

    [224] Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution. Nano Lett., 14, 5479-5487(2014).

    [225] Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors. Langmuir, 26, 13722-13726(2010).

    [226] Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications. Cryst. Growth Des., 9, 4471-4479(2009).

    [227] Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires. Cryst. Growth Des., 9, 1164-1169(2009).

    [228] Red luminescence of Cr in β-Ga2O3 nanowires. J. Appl. Phys., 101, 033517(2007).

    [229] Doped gallium oxide nanowires with waveguiding behavior. Appl. Phys. Lett., 91, 133108(2007).

    [230] Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures. Nanotechnology, 22, 285706(2011).

    [231] Self-catalytic growth and field-emission properties of Ga2O3 nanowires. J. Phys. D, 42, 185409(2009).

    [232] The effect of Ga content on In2xGa2−2xO3 nanowire transistor characteristics. Nanotechnology, 23, 305203(2012).

    [233] Growth and morphology control of β-Ga2O3 nanostructures by atmospheric-pressure CVD. Thin Solid Films, 620, 23-29(2016).

    [234] Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method. Thin Solid Films, 645, 358-362(2018).

    [235] Ga2O3 nanowires prepared by physical evaporation. Solid State Commun., 109, 677-682(1999).

    [236] A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique. J. Alloys Compd., 587, 812-818(2014).

    [237] In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse. J. Mater. Chem., 22, 17984-17991(2012).

    [238] Ga2O3 nanowire photodetector prepared on SiO2 template. IEEE Sens. J., 13, 2368-2373(2013).

    [239] Study of photoconduction properties of CVD grown β-Ga2O3 nanowires. J. Alloys Compd., 683, 143-148(2016).

    [240] Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire. Nano Lett., 15, 3988-3993(2015).

    [241] Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction. ACS Appl. Mater. Interfaces, 9, 1619-1628(2017).

    [242] Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods. J. Alloys Compd., 439, 275-278(2007).

    [243] A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties. J. Cryst. Growth, 280, 99-106(2005).

    [244] A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors. Adv. Mater., 21, 3581-3584(2009).

    [245] Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery. RSC Adv., 5, 12886-12889(2015).

    [246] Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries. Electrochim. Acta, 235, 143-149(2017).

    [247] A well-grown β-Ga2O3 microrods array transformed by GaOOH on Si (100) substrate and growth mechanism study. CrystEngComm, 20, 4329-4335(2018).

    [248] Growth behavior of β-Ga2O3 nanomaterials synthesized by catalyst-free thermal evaporation. Phys. Scr., T139, 014079(2010).

    [249] Synthesis of one-dimensional Ga2O3 nanostructures via high-energy ball milling and annealing of GaN. Ceram. Int., 39, 7223-7227(2013).

    [250] One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical properties. J. Nanosci. Nanotechnol., 18, 5654-5659(2018).

    [251] Synthesis of wide bandgap β-Ga2O3 rods on 3C-SiC-on-Si. Cryst. Growth Des., 16, 511-517(2015).

    [252] Gallium oxide nanoribbons and nanosheets. J. Phys. Chem. B, 106, 902-904(2002).

    [253] Self-assembly of β-Ga2O3 nanobelts. Appl. Surf. Sci., 254, 5124-5128(2008).

    [254] Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts. Nanoscale, 3, 1120-1126(2011).

    [255] Enhanced photocatalytic activity in β-Ga2O3 nanobelts. J. Am. Ceram. Soc., 94, 3117-3122(2011).

    [256] High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (/00) facet-oriented β-Ga2O3 nanobelts. Small, 10, 1848-1856(2014).

    [257] Direct synthesis of beta gallium oxide nanowires, nanobelts, nanosheets and nanograsses by microwave plasma. Solid State Commun., 137, 177-181(2006).

    [258] Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors. J. Mater. Chem. C, 2, 3254-3259(2014).

    [259] High-performance single crystalline UV photodetectors of β-Ga2O3. J. Alloys Compd., 619, 572-575(2015).

    [260] Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope. Ultramicroscopy, 111, 1037-1042(2011).

    [261] Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices. Nanotechnology, 20, 115201(2009).

    [262] Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide. Appl. Catal. B, 142-143, 654-661(2013).

    [263] Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection. Adv. Mater., 26, 6238-6243(2014).

    [264] Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction. Korean J. Chem. Eng., 35, 574-578(2017).

    [265] Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors. ACS Appl. Mater. Interfaces, 9, 40471-40476(2017).

    [266] Individual β-Ga2O3 nanowires as solar-blind photodetectors. Appl. Phys. Lett., 88, 153107(2006).

    [267] Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique. Sens. Actuators B, 140, 240-244(2009).

    [268] Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution. Jpn. J. Appl. Phys., 54, 06fj13(2015).

    [269] Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder. Phys. E (Amsterdam), 36, 226-230(2007).

    [270] Vapor-liquid-solid mechanism of single crystal growth. Appl. Phys. Lett., 4, 89-90(1964).

    [271] An ultrahigh responsivity (9.7 mA·W–1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures. Adv. Funct. Mater., 27, 1700264(2017).

    [272] Anisotropic thermal conductivity in single crystal β-gallium oxide. Appl. Phys. Lett., 106, 111909(2015).

    [273] Raman tensor elements of β-Ga2O3. Sci. Rep., 6, 35964(2016).

    [274] Electronic and thermodynamic properties of β-Ga2O3. Appl. Phys. Lett., 88, 261904(2006).

    [275] Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3. Phys. Rev. B, 96, 245205(2017).

    [276] The structure of low-index surfaces of β-Ga2O3. Chem. Phys., 323, 193-203(2006).

    [277] Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting. J. Mater. Chem. A, 3, 10309-10319(2015).

    [278] First principles study on electronic structure of β-Ga2O3. Solid State Commun., 131, 739-744(2004).

    [279] Oxygen vacancies and donor impurities in β-Ga2O3. Appl. Phys. Lett., 97, 142106(2010).

    [280] Experimental electronic structure of In2O3 and Ga2O3. New J. Phys., 13, 085014(2011).

    [281] Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100). Appl. Phys. Lett., 94, 081906(2009).

    [282] The electronic structure of β-Ga2O3. Appl. Phys. Lett., 97, 211903(2010).

    [283] Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy. Appl. Phys. Lett., 113, 041901(2018).

    [284] Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping. J. Appl. Phys., 124, 075103(2018).

    [285] The ultraviolet luminescence of β-galliumsesquioxide. J. Phys. Chem. Solids, 39, 675-680(1978).

    [286] Some observations on the photoluminescence of doped β-galliumsesquioxide. J. Solid State Chem., 24, 255-263(1978).

    [287] Origin of the blue luminescence of β-Ga2O3. J. Phys. Chem. Solids, 59, 1241-1249(1998).

    [288] Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates. Appl. Phys. Lett., 88, 213507(2006).

    [289] Very narrow-band ultraviolet photodetection based on strained M-plane GaN films. Appl. Phys. Lett., 90, 091110(2007).

    [290] Narrow-band photodetection based on M-plane GaN films. Phys. Status Solidi A, 205, 1100-1102(2008).

    [291] P-type transparent conducting oxides. J. Phys. Condens. Matter, 28, 383002(2016).

    [292] Quasiparticle bands and spectra of Ga2O3 polymorphs. Phys. Rev. B, 93, 115204(2016).

    [293] A survey of acceptor dopants for β-Ga2O3. Semicond. Sci. Technol., 33, 05LT02(2018).

    [294] Selective area isolation of β-Ga2O3 using multiple energy nitrogen ion implantation. Appl. Phys. Lett., 113, 172104(2018).

    [295] Acceptor doping of β-Ga2O3 by Mg and N ion implantations. Appl. Phys. Lett., 113, 102103(2018).

    [296] High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen. Appl. Phys. Lett., 113, 192102(2018).

    [297] Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals. Appl. Phys. Lett., 111, 072102(2017).

    [298] Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals. Phys. Rev. B, 92, 195306(2015).

    [299] . Handbook of Nitride Semiconductors and Devices(2008).

    [300] Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach. Phys. Rev. Lett., 105, 146401(2010).

    [301] Solubility of lithium in doped and undoped silicon, evidence for compound formation. J. Chem. Phys., 25, 650-655(1956).

    [302] Chemical interactions among defects in germanium and silicon. Bell Syst. Tech. J., 35, 535-636(1956).

    [303] Codoping of wide gap epitaxial III-nitride semiconductors. Opto-Electron. Rev., 10, 243-249(2002).

    [304] Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl. Phys. Express, 1, 011202(2008).

    [305] Flame detection by a β-Ga2O3-based sensor. Jpn. J. Appl. Phys., 48, 011605(2009).

    [306] Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3. RSC Adv., 8, 6341-6345(2018).

    [307] Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors. Appl. Phys. Lett., 90, 031912(2007).

    [308] Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors. Jpn. J. Appl. Phys., 46, 7217-7220(2007).

    [309] Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology. Opt. Mater. Express, 4, 1067-1076(2014).

    [310] Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors. Appl. Phys. Lett., 105, 023507(2014).

    [311] High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process. Opt. Express, 23, 13554-13561(2015).

    [312] Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire. IEEE Trans. Electron Devices, 63, 3578-3583(2016).

    [313] Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films. Mater. Lett., 164, 364-367(2016).

    [314] Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors. J. Nanosci. Nanotechnol., 17, 9091-9094(2017).

    [315] Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates. Adv. Opt. Mater., 5, 1700454(2017).

    [316] High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films. ACS Photon., 4, 2937-2943(2017).

    [317] Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide. ACS Photon., 4, 2203-2211(2017).

    [318] High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector. Appl. Phys. Lett., 110, 221107(2017).

    [319] Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film. Proc. SPIE, 10105, 101051M(2017).

    [320] Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors. IEEE Photon. Technol. Lett., 30, 549-552(2018).

    [321] Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum. IEEE Electron Device Lett., 39, 220-223(2018).

    [322] (AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity. Opt. Mater. Express, 7, 1240-1248(2017).

    [323] An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector. IEEE Sens. J., 11, 1795-1799(2011).

    [324] Sol-gel prepared (Ga1–xInx)2O3 thin films for solar-blind ultraviolet photodetectors. Phys. Status Solidi A, 207, 1741-1745(2010).

    [325] Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors. IEEE Photon. Technol. Lett., 27, 915-918(2015).

    [326] Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3. Appl. Phys. Lett., 108, 123503(2016).

    [327] Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors. Appl. Phys. Lett., 72, 542-544(1998).

    [328] Effects of bias on the responsivity of GaN metal–semiconductor–metal photodiodes. Phys. Status Solidi A, 176, 157-161(1999).

    [329] A solar-blind β-Ga2O3 nanowire photodetector. IEEE Photon. Technol. Lett., 22, 709-711(2010).

    [330] Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector. IEEE Trans. Nanotechnol., 10, 1047-1052(2011).

    [331] Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection. Adv. Funct. Mater., 20, 3972-3978(2010).

    [332] β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector. J. Phys. D, 47, 415101(2014).

    [333] Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD. J. Phys. D, 49, 425105(2016).

    [334] Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases. Sens. Actuators B, 221, 544-555(2015).

    [335] Recent advances in solution-processed inorganic nanofilm photodetectors. Chem. Soc. Rev., 43, 1400-1422(2014).

    [336] A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector. IEEE Sens. J., 11, 1491-1492(2011).

    [337] A β-Ga2O3/GaN Schottky-barrier photodetector. IEEE Photon. Technol. Lett., 23, 444-446(2011).

    [338] Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector. IEEE Sens. J., 13, 3462-3467(2013).

    [339] Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles. IEEE Photonics Technol. Lett., 25, 1809-1811(2013).

    [340] Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction. Sens. Actuators A, 232, 208-213(2015).

    [341] Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector. J. Mater. Chem. C, 5, 10562-10570(2017).

    [342] Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction. Appl. Phys. Lett., 103, 072105(2013).

    [343] Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes. J. Alloys Compd., 680, 247-251(2016).

    [344] β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes. Phys. Status Solidi A, 215, 1700796(2018).

    [345] Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions. J. Phys. D, 49, 285111(2016).

    [346] Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection. Semicond. Sci. Technol., 32, 03lt01(2017).

    [347] A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction. J. Mater. Chem. C, 5, 8688-8693(2017).

    [348] Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer. Appl. Phys. A, 122, 1036(2016).

    [349] β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. J. Alloys Compd., 660, 136-140(2016).

    [350] Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application. Adv. Mater., 28, 10725-10731(2016).

    [351] High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication. ACS Appl. Mater. Interfaces, 10, 22419-22426(2018).

    [352] Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film. Sol. Energy Mater. Sol. Cells, 152, 65-72(2016).

    [353] Band alignment of Ga2O3/Si heterojunction interface measured by x-ray photoelectron spectroscopy. Appl. Phys. Lett., 109, 102106(2016).

    [354] Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by x-ray photoelectron spectroscopy. Nano. Res. Lett., 7, 562(2012).

    [355] Oxidation of GaN(0001) by low-energy ion bombardment. Appl. Surf. Sci., 304, 20-23(2014).

    [356] Band alignment of Ga2O3/6H-SiC heterojunction. Chin. Phys. B, 20, 116101(2011).

    [357] Valence and conduction band offsets of β-Ga2O3/AlN heterojunction. Appl. Phys. Lett., 111, 162105(2017).

    [358] Band gap and band offset of Ga2O3 and (AlxGa1–x)2O3 alloys. Phys. Rev. Appl., 10, 011003(2018).

    [359] A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev., 5, 011301(2018).

    [360] Experimental evaluation of impact ionization coefficients in AlxGa1–xN based avalanche photodiodes. Appl. Phys. Lett., 89, 183524(2006).

    [361] Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes. Appl. Phys. Lett., 101, 253516(2012).

    [362] Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation. Appl. Phys. Lett., 112, 023503(2018).

    [363] Radiation damage effects in Ga2O3 materials and devices. J. Mater. Chem. C, 7, 10-24(2019).

    [364] High-level damage saturation below amorphisation in ion implanted β-Ga2O3. Nucl. Instrum. Methods Phys. Res. B, 379, 85-90(2016).

    [365] . Ground breaking work on gallium oxide (Ga2O3) normally-off transistor(2018).

    CLP Journals

    [1] Ke Jiang, Xiaojuan Sun, Zi-Hui Zhang, Jianwei Ben, Jiamang Che, Zhiming Shi, Yuping Jia, Yang Chen, Shanli Zhang, Wei Lv, Dabing Li. Polarization-enhanced AlGaN solar-blind ultraviolet detectors[J]. Photonics Research, 2020, 8(7): 1243

    [2] Zhipeng Zhang, Manni Chen, Xinpeng Bai, Kai Wang, Huanjun Chen, Shaozhi Deng, Jun Chen. Sensitive direct-conversion X-ray detectors formed by ZnO nanowire field emitters and β-Ga2O3 photoconductor targets with an electron bombardment induced photoconductivity mechanism[J]. Photonics Research, 2021, 9(12): 2420

    Xuanhu Chen, Fangfang Ren, Shulin Gu, Jiandong Ye. Review of gallium-oxide-based solar-blind ultraviolet photodetectors[J]. Photonics Research, 2019, 7(4): 381
    Download Citation