• Laser & Optoelectronics Progress
  • Vol. 61, Issue 1, 0114008 (2024)
Lijun Qiao1, Xiaona Wang2、3, Yukai Hao2、3, and Mingjiang Zhang1、2、*
Author Affiliations
  • 1College of Physics, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • 2Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • 3College of Electronic Information and Optical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi , China
  • show less
    DOI: 10.3788/LOP232647 Cite this Article Set citation alerts
    Lijun Qiao, Xiaona Wang, Yukai Hao, Mingjiang Zhang. Progress of Chaotic Semiconductor Lasers and Their Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114008 Copy Citation Text show less
    References

    [1] Maiman T H. Stimulated optical emission in fluorescent solids. I. theoretical considerations[J]. Physical Review, 123, 1145-1150(1961).

    [2] Haken H. Analogy between higher instabilities in fluids and lasers[J]. Physics Letters A, 53, 77-78(1975).

    [3] Dangoisse D, Glorieux P, Midavaine T. Observation of chaos in a frequency modulated CO2 laser[C], FA6(1985).

    [4] Uchida A, Sato T, Ogawa T et al. Nonfeedback control of chaos in a microchip solid-state laser by internal frequency resonance[J]. Physical Review E, 58, 7249-7255(1998).

    [5] Sanchez F, LeFlohic M, Stephan G M et al. Quasi-periodic route to chaos in erbium-doped fiber laser[J]. IEEE Journal of Quantum Electronics, 31, 481-488(1995).

    [6] Mukai T, Otsuka K. New route to optical chaos: successive-subharmonic-oscil-lation cascade in a semiconductor laser coupled to an external cavity[J]. Physical Review Letters, 55, 1711-1714(1985).

    [7] Argyris A, Syvridis D, Larger L et al. Chaos-based communications at high bit rates using commercial fibre-optic links[J]. Nature, 438, 343-346(2005).

    [8] Zhao A K, Jiang N, Wang C et al. Synchronization optimization of chaotic laser based on generative adversarial network[J]. Acta Optica Sinica, 43, 0114002(2023).

    [9] Zhang Y Q, Xu M F, Pu M B et al. Simultaneously enhancing capacity and security in free-space optical chaotic communication utilizing orbital angular momentum[J]. Photonics Research, 11, 2185-2193(2023).

    [10] Uchida A, Amano K, Inoue M et al. Fast physical random bit generation with chaotic semiconductor lasers[J]. Nature Photonics, 2, 728-732(2008).

    [11] Chen R X, Shu H W, Shen B T et al. Breaking the temporal and frequency congestion of LiDAR by parallel chaos[J]. Nature Photonics, 17, 306-314(2023).

    [12] Wang Y H, Zhang M J, Zhang J Z et al. Millimeter-level-spatial-resolution Brillouin optical correlation-domain analysis based on broadband chaotic laser[J]. Journal of Lightwave Technology, 37, 3706-3712(2019).

    [13] Wang Y H, Hu X X, Niu L T et al. Long-range chaotic Brillouin optical correlation domain analysis with more than one million resolving points[J]. Advanced Photonics Nexus, 2, 036011(2023).

    [14] Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 20, 1636-1638(2008).

    [15] Kai C, Li P, Wang B J et al. Time delay signature extraction of optical-feedback-induced chaos with reservoir computing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 7700407(2023).

    [16] Arecchi F T, Lippi G L, Puccioni G P et al. Deterministic chaos in laser with injected signal[J]. Optics Communications, 51, 308-314(1984).

    [17] Simpson T B, Liu J M, Huang K F et al. Nonlinear dynamics induced by external optical injection in semiconductor lasers[J]. Quantum and Semiclassical Optics: Journal of the European Optical Society Part B, 9, 765-784(1997).

    [18] Lang R, Kobayashi K. External optical feedback effects on semiconductor injection laser properties[J]. IEEE Journal of Quantum Electronics, 16, 347-355(1980).

    [19] Simpson T B, Liu J M, Gavrielides A. Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers[J]. IEEE Photonics Technology Letters, 7, 709-711(1995).

    [20] Uchida A, Heil T, Liu Y et al. High-frequency broad-band signal generation using a semiconductor laser with a chaotic optical injection[J]. IEEE Journal of Quantum Electronics, 39, 1462-1467(2003).

    [21] Simpson T B, Liu J M, Gavrielides A et al. Period-doubling route to chaos in a semiconductor laser subject to optical injection[J]. Applied Physics Letters, 64, 3539-3541(1994).

    [22] Sciamanna M, Shore K A. Physics and applications of laser diode chaos[J]. Nature Photonics, 9, 151-162(2015).

    [23] Schires K, Gomez S, Gallet A et al. Passive chaos bandwidth enhancement under dual-optical feedback with hybrid III–V/Si DFB laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 23, 1801309(2017).

    [24] Zhong Z Q, Lin G R, Wu Z M et al. Tunable broadband chaotic signal synthesis from a WRC-FPLD subject to filtered feedback[J]. IEEE Photonics Technology Letters, 29, 1506-1509(2017).

    [25] Bouchez G, Uy C H, Macias B et al. Wideband chaos from a laser diode with phase-conjugate feedback[J]. Optics Letters, 44, 975-978(2019).

    [26] Lin F Y, Liu J M. Nonlinear dynamical characteristics of an optically injected semiconductor laser subject to optoelectronic feedback[J]. Optics Communications, 221, 173-180(2003).

    [27] Lin F Y, Chao Y K, Wu T C. Effective bandwidths of broadband chaotic signals[J]. IEEE Journal of Quantum Electronics, 48, 1010-1014(2012).

    [28] Bünner M J, Popp M, Meyer T et al. Tool to recover scalar time-delay systems from experimental time series[J]. Physical Review E, 54, R3082-R3085(1996).

    [29] Udaltsov V S, Larger L, Goedgebuer J P et al. Time delay identification in chaotic cryptosystems ruled by delay-differential equations[J]. Journal of Optical Technology, 72, 373-377(2005).

    [30] Bandt C, Pompe B. Permutation entropy: a natural complexity measure for time series[J]. Physical Review Letters, 88, 174102(2002).

    [31] Rontani D, Locquet A, Sciamanna M et al. Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback[J]. Optics Letters, 32, 2960-2962(2007).

    [32] Li S S, Liu Q, Chan S C. Distributed feedbacks for time-delay signature suppression of chaos generated from a semiconductor laser[J]. IEEE Photonics Journal, 4, 1930-1935(2012).

    [33] Li S S, Chan S C. Chaotic time-delay signature suppression in a semiconductor laser with frequency-detuned grating feedback[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 541-552(2015).

    [34] Li S S, Zou X H, Zhang L Y et al. Band-rejection feedback for chaotic time-delay signature suppression in a semiconductor laser[J]. IEEE Photonics Journal, 14, 1517208(2022).

    [35] Wang D M, Wang L S, Zhao T et al. Time delay signature elimination of chaos in a semiconductor laser by dispersive feedback from a chirped FBG[J]. Optics Express, 25, 10911-10924(2017).

    [36] Xu Y P, Zhang M J, Zhang L et al. Time-delay signature suppression in a chaotic semiconductor laser by fiber random grating induced random distributed feedback[J]. Optics Letters, 42, 4107-4110(2017).

    [37] Zhang J Z, Li M W, Wang A B et al. Time-delay-signature-suppressed broadband chaos generated by scattering feedback and optical injection[J]. Applied Optics, 57, 6314-6317(2018).

    [38] Pan B W, Lu D, Zhao L J. Broadband chaos generation using monolithic dual-mode laser with optical feedback[J]. IEEE Photonics Technology Letters, 27, 2516-2519(2015).

    [39] Wang A B, Wang Y C, Yang Y B et al. Generation of flat-spectrum wideband chaos by fiber ring resonator[J]. Applied Physics Letters, 102, 031112(2013).

    [40] Wang A B, Wang B J, Li L et al. Optical heterodyne generation of high-dimensional and broadband white chaos[J]. IEEE Journal of Selected Topics in Quantum Electronics, 21, 531-540(2015).

    [41] Chang D, Zhong Z Q, Tang J M et al. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback[J]. Optics Express, 28, 39076-39083(2020).

    [42] Yang Q, Qiao L J, Zhang M J et al. Generation of a broadband chaotic laser by active optical feedback loop combined with a high nonlinear fiber[J]. Optics Letters, 45, 1750-1753(2020).

    [43] Yang Q, Qiao L J, Wei X J et al. Flat broadband chaos generation using a semiconductor laser subject to asymmetric dual-path optical feedback[J]. Journal of Lightwave Technology, 39, 6246-6252(2021).

    [44] Mu P H, Pan W, Yan L S et al. Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections[J]. IEEE Photonics Technology Letters, 28, 131-134(2016).

    [45] Qu Y, Xiang S Y, Wang Y et al. Concealment of time delay signature of chaotic semiconductor nanolasers with double chaotic optical injections[J]. IEEE Journal of Quantum Electronics, 55, 2000407(2019).

    [46] Zhang R H, Zhou P, Yang Y G et al. Enhancing time-delay suppression in a semiconductor laser with chaotic optical injection via parameter mismatch[J]. Optics Express, 28, 7197-7206(2020).

    [47] Xu S R, Jia X H, Ma H L et al. Random-injection-based two-channel chaos with enhanced bandwidth and suppressed time-delay signature by mutually coupled lasers: proposal and numerical analysis[J]. Chinese Physics B, 30, 014203(2021).

    [48] Yu M T, Wang H X, Ji Y F. Investigation on the complex and tunable laser chaos generated by the microresonator optical combs injection[J]. IEEE Journal of Selected Topics in Quantum Electronics, 29, 0600110(2023).

    [49] Xu Y P, Zhang L, Lu P et al. Time-delay signature concealed broadband gain-coupled chaotic laser with fiber random grating induced distributed feedback[J]. Optics & Laser Technology, 109, 654-658(2019).

    [50] Wu J G, Wu Z M, Xia G Q et al. Evolution of time delay signature of chaos generated in a mutually delay-coupled semiconductor lasers system[J]. Optics Express, 20, 1741-1753(2012).

    [51] Wang B, Qiao L J, Wei X J et al. Evolution of the time delay signature of chaos generated in three types of optical injection systems[J]. Applied Optics, 62, 4899-4905(2023).

    [52] Zhao A K, Jiang N, Peng J F et al. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection[J]. Opto-Electronic Advances, 5, 200026(2022).

    [53] Zhang M J, Liu T G, Wang A B et al. Photonic ultrawideband signal generator using an optically injected chaotic semiconductor laser[J]. Optics Letters, 36, 1008-1010(2011).

    [54] Sakuraba R, Iwakawa K, Kanno K et al. Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers[J]. Optics Express, 23, 1470-1490(2015).

    [55] Zhao A K, Jiang N, Chang C C et al. Generation and synchronization of wideband chaos in semiconductor lasers subject to constant-amplitude self-phase-modulated optical injection[J]. Optics Express, 28, 13292-13298(2020).

    [56] Qiao L J, Lü T S, Xu Y et al. Generation of flat wideband chaos based on mutual injection of semiconductor lasers[J]. Optics Letters, 44, 5394-5397(2019).

    [57] Wei X J, Qiao L J, Wang B et al. Generation of wideband chaos with time-delay signature suppression in semiconductor lasers by asymmetrical mutual injection[J/OL]. Journal of Lightwave Technology, 1-10. https://ieeexplore.ieee.org/document/10273610

    [58] Argyris A, Hamacher M, Chlouverakis K E et al. Photonic integrated device for chaos applications in communications[J]. Physical Review Letters, 100, 194101(2008).

    [59] Chlouverakis K E, Argyris A, Bogris A et al. Hurst exponents and cyclic scenarios in a photonic integrated circuit[J]. Physical Review E, 78, 066215(2008).

    [60] Tronciu V Z, Mirasso C R, Colet P et al. Chaos generation and synchronization using an integrated source with an air gap[J]. IEEE Journal of Quantum Electronics, 46, 1840-1846(2010).

    [61] Tronciu V Z, Mirasso C R, Colet P. Chaos-based communications using semiconductor lasers subject to feedback from an integrated double cavity[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 41, 155401(2008).

    [62] Harayama T, Sunada S, Yoshimura K et al. Fast nondeterministic random-bit generation using on-chip chaos lasers[J]. Physical Review A, 83, 031803(2011).

    [63] Sunada S, Harayama T, Arai K et al. Chaos laser chips with delayed optical feedback using a passive ring waveguide[J]. Optics Express, 19, 5713-5724(2011).

    [64] Sunada S, Fukushima T, Shinohara S et al. A compact chaotic laser device with a two-dimensional external cavity structure[J]. Applied Physics Letters, 104, 241105(2014).

    [65] Wu J G, Zhao L J, Wu Z M et al. Direct generation of broadband chaos by a monolithic integrated semiconductor laser chip[J]. Optics Express, 21, 23358-23364(2013).

    [66] Yu L Q, Lu D, Pan B W et al. Monolithically integrated amplified feedback lasers for high-quality microwave and broadband chaos generation[J]. Journal of Lightwave Technology, 32, 3595-3601(2014).

    [67] Li S H, Qiao L J, Chai M M et al. Monolithically integrated laser with DBR for wideband and low time delay signature chaos generation[J]. Frontiers in Physics, 11, 1191597(2023).

    [68] Chai M M, Qiao L J, Li S H et al. Wavelength-tunable monolithically integrated chaotic semiconductor laser[J]. Journal of Lightwave Technology, 40, 5952-5957(2022).

    [69] Vaughan M P, Henning I, Adams M J et al. Mutual optical injection in coupled DBR laser pairs[J]. Optics Express, 17, 2033-2041(2009).

    [70] Cemlyn B R, Labukhin D, Henning I D et al. Dynamic transitions in a photonic integrated circuit[J]. IEEE Journal of Quantum Electronics, 48, 261-268(2012).

    [71] Liu D, Sun C Z, Xiong B et al. Nonlinear dynamics in integrated coupled DFB lasers with ultra-short delay[J]. Optics Express, 22, 5614-5622(2014).

    [72] Ohara S, Dal Bosco A K, Ugajin K et al. Dynamics-dependent synchronization in on-chip coupled semiconductor lasers[J]. Physical Review E, 96, 032216(2017).

    [73] Chai M M, Qiao L J, Zhang M J et al. Simulation of monolithically integrated semiconductor laser subject to random feedback and mutual injection[J]. IEEE Journal of Quantum Electronics, 56, 2001008(2020).

    [74] Ma C G, Xiao J L, Xiao Z X et al. Chaotic microlasers caused by internal mode interaction for random number generation[J]. Light: Science & Applications, 11, 187(2022).

    [75] Li J C, Xiao J L, Yang Y D et al. Random bit generation based on a self-chaotic microlaser with enhanced chaotic bandwidth[J]. Nanophotonics, 12, 4109-4116(2023).

    [76] Zhao A K, Jiang N, Liu S Q et al. Wideband time delay signature-suppressed chaos generation using self-phase-modulated feedback semiconductor laser cascaded with dispersive component[J]. Journal of Lightwave Technology, 37, 5132-5139(2019).

    [77] Mu P H, Pan W, Yan L S et al. Experimental evidence of time-delay concealment in a DFB laser with dual-chaotic optical injections[J]. IEEE Photonics Technology Letters, 28, 131-134(2016).

    [78] Lukashchuk A, Riemensberger J, Tusnin A et al. Chaotic microcomb-based parallel ranging[J]. Nature Photonics, 17, 814-821(2023).

    [79] Mirasso C R, Colet P, Garcia-Fernandez P. Synchronization of chaotic semiconductor lasers: application to encoded communications[J]. IEEE Photonics Technology Letters, 8, 299-301(1996).

    [80] VanWiggeren G D, Roy R. Communication with chaotic lasers[J]. Science, 279, 1198-1200(1998).

    [81] Lavrov R, Jacquot M, Larger L. Nonlocal nonlinear electro-optic phase dynamics demonstrating 10 Gb/s chaos communications[J]. IEEE Journal of Quantum Electronics, 46, 1430-1435(2010).

    [82] Ke J X, Yi L L, Xia G Q et al. Chaotic optical communications over 100-km fiber transmission at 30-Gb/s bit rate[J]. Optics Letters, 43, 1323-1326(2018).

    [83] Gao Z S, Wu Q Q et al. Experimental demonstration of synchronous privacy enhanced chaotic temporal phase en/decryption for high speed secure optical communication[J]. Optics Express, 30, 31209-31219(2022).

    [84] Wang Z Y, Shen L, Yang M et al. High-speed chaos-based secure optical communications over 130-km multi-core fiber[J]. Optics Letters, 48, 4440-4443(2023).

    [85] Hou T T, Yi L L, Yang X L et al. Maximizing the security of chaotic optical communications[J]. Optics Express, 24, 23439-23449(2016).

    [86] Nguimdo R M, Colet P, Larger L et al. Digital key for chaos communication performing time delay concealment[J]. Physical Review Letters, 107, 034103(2011).

    [87] Wang D M, Wang L S, Guo Y Y et al. Key space enhancement of optical chaos secure communication: chirped FBG feedback semiconductor laser[J]. Optics Express, 27, 3065-3073(2019).

    [88] Reidler I, Aviad Y, Rosenbluh M et al. Ultrahigh-speed random number generation based on a chaotic semiconductor laser[J]. Physical Review Letters, 103, 024102(2009).

    [89] Kanter I, Aviad Y, Reidler I et al. An optical ultrafast random bit generator[J]. Nature Photonics, 4, 58-61(2010).

    [90] Li X Z, Chan S C. Random bit generation using an optically injected semiconductor laser in chaos with oversampling[J]. Optics Letters, 37, 2163-2165(2012).

    [91] Zhang L M, Pan B W, Chen G C et al. 640-Gbit/s fast physical random number generation using a broadband chaotic semiconductor laser[J]. Scientific Reports, 7, 45900(2017).

    [92] Wang L S, Zhao T, Wang D M et al. Real-time 14-gbps physical random bit generator based on time-interleaved sampling of broadband white chaos[J]. IEEE Photonics Journal, 9, 7201412(2017).

    [93] Xiang S Y, Wang B, Wang Y et al. 2.24-Tb/s physical random bit generation with minimal post-processing based on chaotic semiconductor lasers network[J]. Journal of Lightwave Technology, 37, 3987-3993(2019).

    [94] Cai Q, Li P, Shi Y C et al. Tbps parallel random number generation based on a single quarter-wavelength-shifted DFB laser[J]. Optics & Laser Technology, 162, 109273(2023).

    [95] Myneni K, Barr T A, Reed B R et al. High-precision ranging using a chaotic laser pulse train[J]. Applied Physics Letters, 78, 1496-1498(2001).

    [96] Lin F Y, Liu J M. Chaotic lidar[J]. IEEE Journal of Selected Topics in Quantum Electronics, 10, 991-997(2004).

    [97] Wang B J, Wang Y C, Kong L Q et al. Multi-target real-time ranging with chaotic laser radar[J]. Chinese Optics Letters, 6, 868-870(2008).

    [98] Rumbaugh L K, Bollt E M, Jemison W D et al. A 532 nm chaotic lidar transmitter for high resolution underwater ranging and imaging[C](2013).

    [99] Cheng C H, Chen C Y, Chen J D et al. 3D pulsed chaos lidar system[J]. Optics Express, 26, 12230-12241(2018).

    [100] Ho H L, Chen J D, Yang C A et al. High-speed 3D imaging using a chaos lidar system[J]. The European Physical Journal Special Topics, 231, 435-441(2022).

    [101] Chen J D, Wu K W, Ho H L et al. 3-D multi-input multi-output (MIMO) pulsed chaos lidar based on time-division multiplexing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 28, 0600209(2022).

    [102] Zhang J Z, Feng C K, Zhang M J et al. Brillouin optical correlation domain analysis based on chaotic laser with suppressed time delay signature[J]. Optics Express, 26, 6962-6972(2018).

    [103] Zhang J Z, Wang Y H, Zhang M J et al. Time-gated chaotic Brillouin optical correlation domain analysis[J]. Optics Express, 26, 17597-17607(2018).

    [104] Li J, Wang C Y, Cao K Y et al. Breakthrough the physical barrier on spatial resolution in Raman distributed fiber sensing using chaotic correlation demodulation[J]. APL Photonics, 8, 076105(2023).

    [105] Wang C Y, Li J, Zhou X X et al. Chaos Raman distributed optical fiber sensing[J]. Light: Science & Applications, 12, 213(2023).

    [106] Hu Z H, Wang B J, Wang L S et al. Improving spatial resolution of chaos OTDR using significant-bit correlation detection[J]. IEEE Photonics Technology Letters, 31, 1029-1032(2019).

    [107] Wang A B, Wang N, Yang Y B et al. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 30, 3420-3426(2012).

    [108] Dong X Y, Wang A B, Zhang J G et al. Combined attenuation and high-resolution fault measurements using chaos-OTDR[J]. IEEE Photonics Journal, 7, 6804006(2015).

    [109] Li M W, Zhang X C, Zhang J Z et al. Long-range and high-precision fault measurement based on hybrid integrated chaotic laser[J]. IEEE Photonics Technology Letters, 31, 1389-1392(2019).

    [110] Zhang L M, Pan B W, Chen G C et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 56, 1253-1256(2017).

    Lijun Qiao, Xiaona Wang, Yukai Hao, Mingjiang Zhang. Progress of Chaotic Semiconductor Lasers and Their Applications (Invited)[J]. Laser & Optoelectronics Progress, 2024, 61(1): 0114008
    Download Citation