• Photonics Research
  • Vol. 10, Issue 9, 2073 (2022)
Ke Tian1、2、†, Jibo Yu1、2、†, Fuchuan Lei3, Jonathan Ward4, Angzhen Li1、2, Pengfei Wang2、5, and Síle Nic Chormaic1、*
Author Affiliations
  • 1Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
  • 2Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China
  • 3Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
  • 4Physics Department, University College Cork, Cork, Ireland
  • 5Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
  • show less
    DOI: 10.1364/PRJ.459561 Cite this Article Set citation alerts
    Ke Tian, Jibo Yu, Fuchuan Lei, Jonathan Ward, Angzhen Li, Pengfei Wang, Síle Nic Chormaic. Blue band nonlinear optics and photodarkening in silica microdevices[J]. Photonics Research, 2022, 10(9): 2073 Copy Citation Text show less
    References

    [1] A. J. Ikushima, T. Fujiwara, K. Saito. Silica glass: a material for photonics. J. Appl. Phys., 88, 1201-1213(2000).

    [2] S. M. Spillane, T. J. Kippenberg, K. J. Vahala. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature, 415, 621-623(2002).

    [3] D. K. Armani, T. J. Kippenberg, S. M. Spillane, K. J. Vahala. Ultra-high-Q toroid microcavity on a chip. Nature, 421, 925-928(2003).

    [4] T. Kippenberg, S. Spillane, K. Vahala. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett., 93, 083904(2004).

    [5] Y. Yang, Y. Ooka, R. M. Thompson, J. M. Ward, S. Nic Chormaic. Degenerate four-wave mixing in a silica hollow bottle-like microresonator. Opt. Lett., 41, 575-578(2016).

    [6] T. Aoki, B. Dayan, E. Wilcut, W. P. Bowen, A. S. Parkins, T. Kippenberg, K. Vahala, H. Kimble. Observation of strong coupling between one atom and a monolithic microresonator. Nature, 443, 671-674(2006).

    [7] F. Lei, J. M. Ward, P. Romagnoli, S. Nic Chormaic. Polarization-controlled cavity input-output relations. Phys. Rev. Lett., 124, 103902(2020).

    [8] M. Baaske, M. Foreman, F. Vollmer. Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. Nat. Nanotechnol., 9, 933-939(2014).

    [9] Y. Yang, R. Madugani, S. Kasumie, J. M. Ward, S. Nic Chormaic. Cavity ring-up spectroscopy for dissipative and dispersive sensing in a whispering gallery mode resonator. Appl. Phys. B, 122, 291(2016).

    [10] L. T. Hogan, E. H. Horak, J. M. Ward, K. A. Knapper, S. Nic Chormaic, R. H. Goldsmith. Toward real-time monitoring and control of single nanoparticle properties with a microbubble resonator spectrometer. ACS Nano, 13, 12743-12757(2019).

    [11] L. Tong, R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature, 426, 816-819(2003).

    [12] J. C. Knight, G. Cheung, F. Jacques, T. A. Birks. Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper. Opt. Lett., 22, 1129-1131(1997).

    [13] F. Lei, G. Tkachenko, X. Jiang, J. M. Ward, L. Yang, S. Nic Chormaic. Enhanced directional coupling of light with a whispering gallery microcavity. ACS Photon., 7, 361-365(2020).

    [14] T. Birks, W. Wadsworth, P. St.J. Russell. Supercontinuum generation in tapered fibers. Opt. Lett., 25, 1415-1417(2000).

    [15] A. Cavanna, J. Hammer, C. Okoth, E. Ortiz-Ricardo, H. Cruz-Ramirez, K. Garay-Palmett, A. B. U’Ren, M. H. Frosz, X. Jiang, N. Y. Joly, M. V. Chekhova. Progress toward third-order parametric down-conversion in optical fibers. Phys. Rev. A, 101, 033840(2020).

    [16] D. J. Moss, R. Morandotti, A. L. Gaeta, M. Lipson. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics, 7, 597-607(2013).

    [17] T. J. Morin, L. Chang, W. Jin, C. Li, J. Guo, H. Park, M. A. Tran, T. Komljenovic, J. E. Bowers. CMOS-foundry-based blue and violet photonics. Optica, 8, 755-756(2021).

    [18] Z. Ye, P. Zhao, K. Twayana, M. Karlsson, V. Torres-Company, P. A. Andrekson. Overcoming the quantum limit of optical amplification in monolithic waveguides. Sci. Adv., 7, eabi8150(2021).

    [19] J. Jian, P. Xu, H. Chen, M. He, Z. Wu, L. Zhou, L. Liu, C. Yang, S. Yu. High-efficiency hybrid amorphous silicon grating couplers for sub-micron-sized lithium niobate waveguides. Opt. Express, 26, 29651-29658(2018).

    [20] Ş. K. Özdemir, J. Zhu, X. Yang, B. Peng, H. Yilmaz, L. He, F. Monifi, S. H. Huang, G. L. Long, L. Yang. Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser. Proc. Natl. Acad. Sci. USA, 111, E3836-E3844(2014).

    [21] A. Savchenkov, A. Matsko, W. Liang, V. Ilchenko, D. Seidel, L. Maleki. Kerr combs with selectable central frequency. Nat. Photonics, 5, 293-296(2011).

    [22] Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. M. Ward, L. Yang, S. Nic Chormaic. Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator. Opt. Lett., 41, 5266-5269(2016).

    [23] S. H. Lee, D. Y. Oh, Q.-F. Yang, B. Shen, H. Wang, K. Y. Yang, Y.-H. Lai, X. Yi, X. Li, K. Vahala. Towards visible soliton microcomb generation. Nat. Commun., 8, 1295(2017).

    [24] S. Kasumie, Y. Yong, J. M. Ward, S. Nic Chormaic. Towards visible frequency comb generation using a hollow WGM resonator. Rev. Laser Eng., 46, 92-96(2018).

    [25] J. Ma, L. Xiao, J. Gu, H. Li, X. Cheng, G. He, X. Jiang, M. Xiao. Visible Kerr comb generation in a high-Q silica microdisk resonator with a large wedge angle. Photon. Res., 7, 573-578(2019).

    [26] A. A. Savchenkov, A. B. Matsko, S. Williams. Coupler-induced phase matching of resonant hyperparametric scattering. Opt. Lett., 45, 3609-3612(2020).

    [27] T. Carmon, K. J. Vahala. Visible continuous emission from a silica microphotonic device by third-harmonic generation. Nat. Phys., 3, 430-435(2007).

    [28] S. Fujii, T. Kato, R. Suzuki, T. Tanabe. Third-harmonic blue light generation from Kerr clustered combs and dispersive waves. Opt. Lett., 42, 2010-2013(2017).

    [29] H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi, Y.-F. Xiao. Chaos-assisted two-octave-spanning microcombs. Nat. Commun., 11, 2336(2020).

    [30] L. J. Stephenson, D. P. Nadlinger, B. C. Nichol, S. An, P. Drmota, T. G. Ballance, K. Thirumalai, J. F. Goodwin, D. M. Lucas, C. J. Ballance. High-rate, high-fidelity entanglement of qubits across an elementary quantum network. Phys. Rev. Lett., 124, 110501(2020).

    [31] K. S. Rajasree, T. Ray, K. Karlsson, J. L. Everett, S. Nic Chormaic. Generation of cold Rydberg atoms at submicron distances from an optical nanofiber. Phys. Rev. Res., 2, 012038(2020).

    [32] S. Nic Chormaic. Nonlinear optics and sensing using WGM resonators. Proc. SPIE, 11700, 117002P(2021).

    [33] L. Ding, C. Belacel, S. Ducci, G. Leo, I. Favero. Ultralow loss single-mode silica tapers manufactured by a microheater. Appl. Opt., 49, 2441-2445(2010).

    [34] N. Zhao, Y. Wang, J. Li, C. Liu, J. Peng, H. Li, N. Dai, L. Yang, J. Li. Investigation of cerium influence on photo-darkening and photo-bleaching in Yb-doped fibers. Appl. Phys. A, 122, 75(2016).

    [35] Q. Zhao, Q. Hao, Y. Luo, X. Li, S. Cui, F. Tan, C. Yu, G.-D. Peng. Photo-induced bleaching and thermally stimulated recovery of BAC-P in Bi-doped phosphosilicate fibers. Opt. Lett., 45, 5389-5392(2020).

    [36] S. Jetschke, S. Unger, U. Röpke, J. Kirchhof. Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power. Opt. Express, 15, 14838-14843(2007).

    [37] H.-J. Otto, N. Modsching, C. Jauregui, J. Limpert, A. Tünnermann. Impact of photodarkening on the mode instability threshold. Opt. Express, 23, 15265-15277(2015).

    [38] B. Ward. Theory and modeling of photodarkening-induced quasi static degradation in fiber amplifiers. Opt. Express, 24, 3488-3501(2016).

    [39] J. Stone, W. Wadsworth, J. Knight. 1064 nm laser-induced defects in pure SiO2 fibers. Opt. Lett., 38, 2717-2719(2013).

    [40] K. Tian, J. Yu, X. Wang, H. Zhao, D. Liu, E. Lewis, G. Farrell, P. Wang. Miniature Fabry–Perot interferometer based on a movable microsphere reflector. Opt. Lett., 45, 787-790(2020).

    [41] Y. Liu, Y. Xuan, X. Xue, P.-H. Wang, S. Chen, A. J. Metcalf, J. Wang, D. E. Leaird, M. Qi, A. M. Weiner. Investigation of mode coupling in normal-dispersion silicon nitride microresonators for Kerr frequency comb generation. Optica, 1, 137-144(2014).

    [42] A. Savchenkov, A. Matsko, W. Liang, V. Ilchenko, D. Seidel, L. Maleki. Kerr frequency comb generation in overmoded resonators. Opt. Express, 20, 27290-27298(2012).

    [43] V. Lobanov, G. Lihachev, T. Kippenberg, M. Gorodetsky. Frequency combs and platicons in optical microresonators with normal GVD. Opt. Express, 23, 7713-7721(2015).

    [44] M. J. Söderlund, J. J. Montiel i Ponsoda, J. P. Koplow, S. Honkanen. Thermal bleaching of photodarkening in ytterbium-doped fibers. Proc. SPIE, 7580, 75800B(2010).

    [45] Y. Liu, Y. Xing, G. Chen, J. Peng, H. Li, N. Dai, J. Li. Thermal bleaching of photodarkening and heat-induced loss and spectral broadening in Tm3+-doped fibers. Opt. Express, 28, 21845-21853(2020).

    [46] L. Dong, J. Archambault, L. Reekie, P. St.J. Russell, D. Payne. Photoinduced absorption change in germanosilicate preforms: evidence for the color-center model of photosensitivity. Appl. Opt., 34, 3436-3440(1995).

    [47] K. Kajihara, L. Skuja, M. Hirano, H. Hosono. Interconversion between non-bridging oxygen hole center and peroxy radical in F2-laser-irradiated SiO2 glass. J. Non-Cryst. Solids, 345, 219-223(2004).

    [48] K. Kajihara, L. Skuja, M. Hirano, H. Hosono. Diffusion and reactions of hydrogen in F2-laser-irradiated SiO2 glass. Phys. Rev. Lett., 89, 135507(2002).

    [49] U. Ullah, M. I. Cheema. Spatiotemporal thermal analysis of tapered fibers in optical cavity sensing applications at 633 nm and 1550 nm. OSA Contin., 4, 2734-2746(2021).

    [50] F. Lei, R. M. Murphy, J. M. Ward, Y. Yang, S. Nic Chormaic. Bandpass transmission spectra of a whispering-gallery microcavity coupled to an ultrathin fiber. Photon. Res., 5, 362-366(2017).

    [51] S. Kasumie, F. Lei, J. M. Ward, X. Jiang, L. Yang, S. Nic Chormaic. Raman laser switching induced by cascaded light scattering. Laser Photon. Rev., 13, 1900138(2019).

    [52] D. L. Griscom. Optical properties and structure of defects in silica glass. J. Ceram. Soc. Jpn., 99, 923-942(1991).

    [53] D. L. Griscom. A minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self-trapped holes and how they can be controlled. Phys. Res. Int., 2013, 379041(2013).

    [54] L. Skuja, H. Hosono, M. Hirano. Laser-induced color centers in silica. Proc. SPIE, 4347, 155-168(2001).

    [55] K. Mishchik. Ultrafast laser-induced modification of optical glasses: a spectroscopy insight into the microscopic mechanisms(2012).

    Ke Tian, Jibo Yu, Fuchuan Lei, Jonathan Ward, Angzhen Li, Pengfei Wang, Síle Nic Chormaic. Blue band nonlinear optics and photodarkening in silica microdevices[J]. Photonics Research, 2022, 10(9): 2073
    Download Citation