• Chinese Optics Letters
  • Vol. 20, Issue 1, 010602 (2022)
Xiao Chen, Liangjin Huang*, Yi An, Huan Yang, Zhiping Yan, Yisha Chen, Xiaoming Xi, Zhiyong Pan, and Pu Zhou**
Author Affiliations
  • College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202220.010602 Cite this Article Set citation alerts
    Xiao Chen, Liangjin Huang, Yi An, Huan Yang, Zhiping Yan, Yisha Chen, Xiaoming Xi, Zhiyong Pan, Pu Zhou. Spectrally U-shaped profile of beam propagation factor in all-solid photonic bandgap fiber[J]. Chinese Optics Letters, 2022, 20(1): 010602 Copy Citation Text show less
    References

    [1] C. Xie, T. Ning, J. Zheng, L. Pei, J. Wang, J. Li, H. You, C. Wang, X. Gao. Amplification characteristics in active tapered segmented cladding fiber with large mode area. High Power Laser Sci. Eng., 9, e32(2021).

    [2] X. Zhang, S. F. Gao, Y. Y. Wang, W. Ding, P. Wang. Design of large mode area all-solid anti-resonant fiber for high-power lasers. High Power Laser Sci. Eng., 9, e23(2021).

    [3] U. Teğin, B. Rahmani, E. Kakkava, D. Psaltis, C. Moser. Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers. Adv. Photon., 2, 056005(2020).

    [4] L. Huang, T. Yao, B. Yang, J. Leng, P. Zhou, Z. Pan, S. Gu, X. Cheng. Modified single trench fiber with effective single-mode operation for high-power application. IEEE J. Sel. Top. Quantum Electron., 24, 0901409(2018).

    [5] Y. Jeong, J. K. Sahu, D. N. Payne, J. Nilsson. Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. Opt. Express, 12, 6088(2004).

    [6] L. Wang, D. He, C. Yu, S. Feng, L. Hu, D. Chen. Very large-mode-area, symmetry-reduced, neodymium-doped silicate glass all-solid large-pitch fiber. IEEE J. Sel. Top. Quantum Electron., 22, 4400105(2016).

    [7] L. Dong, F. Kong, G. Gu, T. W. Hawkins, M. Jones, J. Parsons, M. T. Kalichevsky-Dong, K. Saitoh, B. Pulford, I. Dajani. Large-mode-area all-solid photonic bandgap fibers for the mitigation of optical nonlinearities. IEEE J. Sel. Top. Quantum Electron., 22, 4900207(2016).

    [8] X. Hu, J. Peng, L. Yang, J. Li, H. Li, N. Dai. Design and fabrication of a heterostructured cladding solid-core photonic bandgap fiber for construction of Mach–Zehnder interferometer and high sensitive curvature sensor. Opt. Express, 26, 7005(2018).

    [9] M. Li, L. Wang, S. Han, C. Yu, D. Chen, W. Chen, L. Hu. Large-mode-area neodymium-doped all-solid double-cladding silicate photonic bandgap fiber with an index step of ∼0.5%. Chin. Opt. Lett., 16, 080601(2018).

    [10] X. Chen, L. Huang, X. Xi, H. Yang, Y. An, Z. Yan, Z. Pan, P. Zhou. Leakage channels enabled multi-resonant all-solid photonic bandgap fiber for effective single-mode propagation. Opt. Express, 29, 22455(2021).

    [11] O. Vanvincq, A. Cassez, R. Habert, H. E. Hamzaoui, K. Baudelle, S. Plus, D. Labat, M. Bouazaoui, Y. Quiquempois, G. Bouwmans, F. Audo, T. Chartier, E. Lallier, L. Bigot. Large mode area solid-core photonic bandgap Yb-doped fiber with hetero-structured cladding for compact high-power laser systems. J. Light. Technol., 39, 4809(2021).

    [12] G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, J. Luo. Low-loss all-solid photonic bandgap fiber. Opt. Lett., 32, 1023(2007).

    [13] W. Li, T. Matniyaz, S. Gafsi, M. T. Kalichevsky-Dong, T. W. Hawkins, J. Parsons, G. Gu, L. Dong. 151 W monolithic diffraction-limited Yb-doped photonic bandgap fiber laser at ∼978 nm. Opt. Express, 27, 24972(2019).

    [14] G. Gu, F. Kong, T. Hawkins, J. Parsons, M. Jones, C. Dunn, M. T. Kalichevsky-Dong, K. Saitoh, L. Dong. Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers. Opt. Express, 22, 13962(2014).

    [15] M. Li, L. Wang, S. Han, D. Chen, C. Yu, W. Chen, L. Hu. Large-mode-area neodymium-doped all-solid double-cladding silicate photonic bandgap fiber with a 32 µm core diameter. Opt. Mater. Express, 8, 1562(2018).

    [16] F. Kong, G. Gu, T. Hawkins, M. Jones, J. Parsons, M. Kalichevsky-Dong, B. Pulford, I. Dajani, L. Dong. ∼1 kilowatt ytterbium-doped all-solid photonic bandgap fiber laser. SPIE, 10083, 1008311(2017).

    [17] A. Baz, L. Bigot, G. Bouwmans, Y. Quiquempois. Single-mode, large mode area, solid-core photonic bandgap fiber with hetero-structured cladding. J. Lightwave Technol., 31, 830(2013).

    [18] G. Gu, F. Kong, T. W. Hawkins, M. Jones, L. Dong. Extending mode areas of single-mode all-solid photonic bandgap fibers. Opt. Express, 23, 9147(2015).

    [19] T. Taru, J. Hou, J. Knight. Raman gain suppression in all-solid photonic bandgap fiber. in European Conference and Exhibition of Optical Communication, 1(2007).

    [20] J. W. Nicholson, A. D. Yablon, S. Ramachandran, S. Ghalmi. Spatially and spectrally resolved imaging of modal content in large-mode-area fibers. Opt. Express, 16, 7233(2008).

    [21] D. Flamm, C. Schulze, D. Naidoo, S. Schroter, A. Forbes, M. Duparre. All-digital holographic tool for mode excitation and analysis in optical fibers. J. Lightwave Technol., 31, 1023(2013).

    [22] Y. An, L. Huang, J. Li, J. Leng, L. Yang, P. Zhou. Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express, 27, 10127(2019).

    [23] S. Wielandy. Implications of higher-order mode content in large mode area fibers with good beam quality. Opt. Express, 15, 15402(2007).

    [24] H. Yoda, P. Polynkin, M. Mansuripur. Beam quality factor of higher order modes in a step-index fiber. J. Lightwave Technol., 24, 1350(2006).

    [25] F. Kong, K. Saitoh, D. McClane, T. Hawkins, P. Foy, G. Gu, L. Dong. Mode area scaling with all-solid photonic bandgap fibers. Opt. Express, 20, 26363(2012).

    [26] M. J. F. Digonnet, K. Hyang Kyun, G. S. Kino, F. Shanhui. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers. J. Lightwave Technol., 23, 4169(2005).

    [27] X. Chen, L. Huang, X. Xi, H. Yang, Y. An, Z. Yan, Z. Pan, P. Zhou. Large-mode-area multi-resonant all-solid photonic bandgap fiber with low bending loss and robust single-mode operation(2021).

    [28] F. Yu, M. Xu, J. C. Knight. Experimental study of low-loss single-mode performance in anti-resonant hollow-core fibers. Opt. Express, 24, 12969(2016).

    [29] D. Flamm, C. Schulze, R. Brüning, O. A. Schmidt, T. Kaiser, S. Schröter, M. Duparré. Fast M2 measurement for fiber beams based on modal analysis. Appl. Opt., 51, 987(2012).

    [30] R. Tao, L. Huang, P. Zhou, L. Si, Z. Liu. Propagation of high-power fiber laser with high-order-mode content. Photonics Res., 3, 192(2015).

    [31] N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, C. M. de Sterke. Resonances in microstructured optical waveguides. Opt. Express, 11, 1243(2003).

    Data from CrossRef

    [1] Xiao Chen, Liangjin Huang, Huan Yang, Xiaoming Xi, Yi An, Zhiping Yan, Yisha Chen, Zhiyong Pan, Pu Zhou. Large-mode-area multi-resonant all-solid photonic bandgap fiber with low bending loss and robust single-mode operation. Optics & Laser Technology, 157, 108668(2023).

    Xiao Chen, Liangjin Huang, Yi An, Huan Yang, Zhiping Yan, Yisha Chen, Xiaoming Xi, Zhiyong Pan, Pu Zhou. Spectrally U-shaped profile of beam propagation factor in all-solid photonic bandgap fiber[J]. Chinese Optics Letters, 2022, 20(1): 010602
    Download Citation