• Chinese Journal of Lasers
  • Vol. 45, Issue 2, 207019 (2018)
Gao Feng, Fan Jinyu, Kong Wen, and Shi Guohua*
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/CJL201845.0207019 Cite this Article Set citation alerts
    Gao Feng, Fan Jinyu, Kong Wen, Shi Guohua. Research Progress on Optical Coherence Tomography in Detecting Vascular Flow Field[J]. Chinese Journal of Lasers, 2018, 45(2): 207019 Copy Citation Text show less
    References

    [1] Lexer F, Hitzenberger C K, Fercher A F et al. Wavelength-tuning interferometry of intraocular distances[J]. Applied Optics, 36, 6548-6553(1997). http://www.ncbi.nlm.nih.gov/pubmed/18259516

    [2] Chinn S R, Swanson E A, Fujimoto J G. Optical coherence tomography using a frequency-tunable optical source[J]. Optics Letters, 22, 340-342(1997). http://www.opticsinfobase.org/abstract.cfm?id=35999

    [3] Yun S H, Boudoux C, Tearney G J et al. High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter[J]. Optics Letters, 28, 1981-1983(2003). http://onlinelibrary.wiley.com/resolve/reference/PMED?id=14587796

    [4] Klein T, Wieser W, Reznicek L et al. Multi-MHz retinal OCT[J]. Biomedical Optics Express, 4, 1890-1908(2013).

    [5] Zhao Y, Chen Z, Saxer C et al. Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity[J]. Optics Letters, 25, 114-116(2000). http://www.opticsinfobase.org/abstract.cfm?id=291

    [6] Zhao Y, Chen Z, Saxer C et al. Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow[J]. Optics Letters, 25, 1358-1360(2000). http://www.ncbi.nlm.nih.gov/pubmed/18066216

    [7] Liu G, Chou L, Jia W et al. Intensity-based modified Doppler variance algorithm dedicated for phase instable optical coherence tomography systems[J]. Optics Express, 19, 11429-11440(2011). http://spie.org/x648.xml?product_id=907151

    [8] Wang R K, Jacques S L, Ma Z et al. Three dimensional optical angiography[J]. Optics Express, 15, 4083-4097(2007).

    [9] Mariampillai A, Standish B A, Moriyama E H et al. Speckle variance detection of microvasculature using swept-source optical coherence tomography[J]. Optics Letters, 33, 1530-1532(2008). http://www.europepmc.org/abstract/MED/18594688

    [10] Jia Y, Tan O, Tokayer J et al. Split-spectrum amplitude-decorrelation angiography with optical coherence tomography[J]. Optics Express, 20, 4710-4725(2012). http://europepmc.org/articles/PMC3381646/

    [11] Fercher A F, Hitzenberger C K, Kamp G et al. Measurement of intraocular distances by backscattering spectral interferometry[J]. Optics Communications, 117, 43-48(1995). http://www.sciencedirect.com/science/article/pii/003040189500119S

    [12] Zhang A, Xi J, Liang W et al. Generic pixel-wise speckle detection in Fourier-domain optical coherence tomography images[J]. Optics Letters, 39, 4392-4395(2014). http://www.ncbi.nlm.nih.gov/pubmed/25078185

    [13] Liu G, Lin A J, Tromberg B J et al. A comparison of Doppler optical coherence tomography methods[J]. Biomedical Optics Express, 3, 2669-2680(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3469988/

    [14] Szkulmowska A, Szkulmowski M, Kowalczyk A et al. Phase-resolved Doppler optical coherence tomography-limitations and improvements[J]. Optics Letters, 33, 1425-1427(2008). http://europepmc.org/abstract/med/18594653

    [15] Hendargo H C, Mcnabb R P, Dhalla A H et al. Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography[J]. Biomedical Optics Express, 2, 2175-2188(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3149517/

    [16] Baumann B, Potsaid B, Kraus M F et al. Total retinal blood flow measurement with ultrahigh speed swept source/Fourier domain OCT[J]. Biomedical Optics Express, 2, 1539-1552(2011). http://pubmedcentralcanada.ca/pmcc/articles/PMC3114222/

    [17] Ren H, Brecke K M, Ding Z et al. Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography[J]. Optics Letters, 27, 409-411(2002). http://www.opticsinfobase.org/abstract.cfm?id=68313

    [18] Wang L, Wang Y, Guo S et al. Frequency domain phase-resolved optical Doppler and Doppler variance tomography[J]. Optics Communications, 242, 345-350(2004). http://www.sciencedirect.com/science/article/pii/S0030401804008454

    [19] Lee K K C, Mariampillai A, Yu J X Z et al. . Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit[J]. Biomedical Optics Express, 3, 1557-1564(2012). http://europepmc.org/articles/pmc3395481/

    [20] Sudbeendran N, Syed S H, Dickinson M E et al. Speckle variance OCT imaging of the vasculature in live mammalian embryos[J]. Laser Physics Letters, 8, 247-252(2015). http://onlinelibrary.wiley.com/doi/10.1002/lapl.201010120/pdf

    [21] Wei E, Jia Y, Tan O et al. Parafoveal retinal vascular response to pattern visual stimulation assessed with OCT angiography[J]. PLoS One, 8, e81343(2013). http://europepmc.org/abstract/med/24312549

    [22] Wang Q, Wei W B. Optical cohenrence tomography with split-spectrum amplitude decorrelation angiography[J]. International Review of Ophthalmology, 40, 112-116(2016).

    [23] Jia Y, Wei E, Wang X et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma[J]. Ophthalmology, 121, 1322-1332(2014). http://europepmc.org/abstract/MED/24629312

    [24] Liu L, Jia Y, Takusagawa H L et al. Optical coherence tomography angiography of the peripapillary retina in glaucoma[J]. JAMA Ophthalmol, 133, 1045-1052(2015). http://www.ncbi.nlm.nih.gov/pubmed/26203793

    [25] Baumann B, Pircher M, Götzinger E et al. Full range complex spectral domain optical coherence tomography without additional phase shifters[J]. Optics Express, 15, 13375-13387(2007). http://www.opticsinfobase.org/abstract.cfm?uri=oe-15-20-13375

    [26] An L, Wang R K. Use of a scanner to modulate spatial interferograms for in vivo full-range Fourier-domain optical coherence tomography[J]. Optics Letters, 32, 3423-3425(2007). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4827990

    [27] Leitgeb R A, Michaely R, Lasser T et al. Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning[J]. Optics Letters, 32, 3453-3455(2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-23-3453

    [28] Zhang A, Zhang Q, Chen C L et al. Methods and algorithms for optical coherence tomography-based angiography: A review and comparison[J]. Journal of Biomedical Optics, 20, 100901(2015). http://europepmc.org/articles/PMC4881033/

    [29] Wang R K, An L. Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo[J]. Optics Express, 17, 8926-8940(2009). http://pubmedcentralcanada.ca/pmcc/articles/PMC2714191/

    [30] Yun S H, Tearney G J. BOER J F D, et al. High-speed optical frequency-domain imaging[J]. Optics Express, 11, 2953-2963(2003).

    [31] Liu G, Tan O, Gao S S et al. Postprocessing algorithms to minimize fixed-pattern artifact and reduce trigger jitter in swept source optical coherence tomography[J]. Optics Express, 23, 9824-9834(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4523376/

    [32] Vakoc B J, Yun S H. Boer J F D, et al. Phase-resolved optical frequency domain imaging[J]. Optics Express, 13, 5483-5493(2005).

    [33] Zhang J, Chen Z. In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography[J]. Optics Express, 13, 7449-7457(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=VIRT02000011000001000073000001&idtype=cvips&gifs=Yes

    [34] Pan C, Guo L, Shen Y et al. Phase correction method based on interfacial signal in swept source optical coherence tomography[J]. Acta Physica Sinica, 65, 014201(2016).

    [35] Hong Y J, Makita S, Jaillon F et al. High-penetration swept source Doppler optical coherence angiography by fully numerical phase stabilization[J]. Optics Express, 20, 2740-2760(2012). http://www.ncbi.nlm.nih.gov/pubmed/22330511/?ncbi_mmode=std

    [36] Braaf B, Vermeer K A. Sicam V A D P, et al. Phase-stabilized optical frequency domain imaging at 1-μm for the measurement of blood flow in the human choroid[J]. Optics Express, 19, 20886-20903(2011). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-19-21-20886

    [37] Fan J Y, Gao F, Kong W et al. A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography[J]. Acta Physica Sinica, 66, 114204(2017).

    [38] Choi W, Potsaid B, Jayaraman V et al. Phase-sensitive swept-source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source[J]. Optics Letters, 38, 338-340(2013). http://www.ncbi.nlm.nih.gov/pubmed/23381430

    [39] Park B H, Pierce M C, Cense B et al. Real-time fiber-based multi-functional spectral- domain optical coherence tomography at 1.3 μm[J]. Optics Express, 13, 3931-3944(2005). http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-11-3931

    [40] Zhi Z W, Qin W, Wang J et al. 4D optical coherence tomography-based micro-angiography achieved by 1.6-MHz FDML swept source[J]. Optics Letters, 40, 1779-1782(2015). http://pubmedcentralcanada.ca/pmcc/articles/PMC4612623/

    [41] An L, Qin J, Wang R K. Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds[J]. Optics Express, 18, 8220-8228(2010). http://www.opticsinfobase.org/abstract.cfm?uri=oe-18-8-8220

    [42] Braaf B, Vermeer K A, Vienola K V et al. Angiography of the retina and the choroid with phase-resolved OCT using interval-optimized backstitched B-scans[J]. Optics Express, 20, 20516-20534(2012). http://www.ncbi.nlm.nih.gov/pubmed/23037099

    [43] Zhao Y H, Brecke K M, Ren H W et al. Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography[J]. IEEE Journal on Selected Topics in Quantum Electronics, 7, 1-5(2001). http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=983296

    [44] Liu G, Che Z. Phase-resolved Doppler optical coherence tomography[M]. //Optical Coherence Tomography. [S.l.]:[s.n.], 23-25(2012).

    [45] An L, Wang R K. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography[J]. Optics Express, 16, 11438-11452(2008). http://www.ncbi.nlm.nih.gov/pubmed/18648464

    [46] Fingler J, Zawadzki R J, Werner J S et al. Volumetric microvascular imaging of human retina using optical coherence tomography with a novel motion contrast technique[J]. Optics Express, 17, 22190-22200(2009). http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-24-22190

    [47] Wang R K, Hurst S. Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by optical micro-angiography at 1.3 μm wavelength[J]. Optics Express, 15, 11402-11412(2007). http://www.ncbi.nlm.nih.gov/pubmed/19547498

    [48] Ding Z H, Chen M H, Wang K et al. High-speed swept source and its application in optical frequency-domain imaging[J]. Chinese Journal of Lasers, 36, 2469-2476(2009).

    [49] Chen M H, Li H, Fan Y P. Development of 30 kHz repetition rate swept laser source with narrow instataneous linewidth[J]. Chinese Journal of Lasers, 43, 0416001(2016).

    [50] Bonesi M, Minneman M P, Ensher J et al. Akinetic all-semiconductor programmable swept-source at 1550 nm and 1310 nm with centimeters coherence length[J]. Optics Express, 22, 2632-2655(2014). http://europepmc.org/abstract/med/24663556

    [51] Song S Z, Wei W, Hsieh B Y et al. Strategies to improve phase-stability of ultrafast swept source optical coherence tomography for single shot imaging of transient mechanical waves at 16 kHz frame rate[J]. Applied Physics Letters, 108, 191104(2016). http://www.ncbi.nlm.nih.gov/pubmed/27375295

    Gao Feng, Fan Jinyu, Kong Wen, Shi Guohua. Research Progress on Optical Coherence Tomography in Detecting Vascular Flow Field[J]. Chinese Journal of Lasers, 2018, 45(2): 207019
    Download Citation