• Infrared and Laser Engineering
  • Vol. 49, Issue 6, 20190370 (2020)
Wang Mingjun1、2, Zhang Jialin1、*, and Wang Jiao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.3788/irla20190370 Cite this Article
    Wang Mingjun, Zhang Jialin, Wang Jiao. Propagation characteristics of non-uniformly Sinc-correlated blue-green laser beam through oceanic turbulence[J]. Infrared and Laser Engineering, 2020, 49(6): 20190370 Copy Citation Text show less

    Abstract

    The propagation model of non-uniformly Sinc-correlated blue-green laser beam in oceanic turbulence was developed according to generalized Huygens-Fresnel principles. Based on the cross-spectral density, intensity variations in different propagation distances were discussed. When the oceanic turbulence parameters were varied, intensity and lateral shifted intensity maximum were numerically simulated. The results show that the propagation distance and ocean turbulence parameters have a certain influence on the intensity self-focusing effect of the non-uniformly Sinc-correlated blue-green laser beam. When the propagation distance is certain, the effect of the rate of dissipation of mean-square temperature on the intensity self-focusing is greater than the rate of dissipation of kinetic energy and the relative strength of temperature and salinity fluctuations.
    ${W^{\left( 0 \right)}}\left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right) = \left\langle {E\left( {{{\bf{\rho }}_{\bf{1}}}} \right){E^ * }\left( {{{\bf{\rho }}_{\bf{2}}}} \right)} \right\rangle $(1)

    View in Article

    $\int {\int {{{\rm{d}}^2}{{\bf{\rho }}_{\bf{1}}}} } {{\rm{d}}^2}{{\bf{\rho }}_{\bf{2}}}{W^{\left( 0 \right)}}\left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right)f\left( {{{\bf{\rho }}_{\bf{1}}}} \right)f\left( {{{\bf{\rho }}_{\bf{2}}}} \right) \geqslant 0$(2)

    View in Article

    ${W^{\left( 0 \right)}}\left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right) = \int {p\left( v \right)H_0^ * \left( {{{\bf{\rho }}_{\bf{1}}},v} \right){H_0}\left( {{{\bf{\rho }}_{\bf{2}}},v} \right){\rm{d}}v} $(3)

    View in Article

    ${H_0}\left( {{\bf{\rho }},v} \right) = \tau \left( {\bf{\rho }} \right)\exp \left[ { - if\left( {\bf{\rho }} \right)v} \right]$(4)

    View in Article

    $p\left( v \right) = \frac{1}{a} \cdot {\rm{rect}}\left( {\frac{v}{a}} \right) = \left\{ {\begin{array}{*{20}{c}} {1/a,\;\;\; \left| v \right| \leqslant a/2} \\ {0,\;\;\; \left| v \right| > a/2} \end{array}} \right.$(5)

    View in Article

    ${H_0}\left( {{\bf{\rho }},v} \right) = \tau \left( {\bf{\rho }} \right)\exp \left[ { - 2{\text{π}} iv{{\left( {{\bf{\rho }} - {\rho _0}} \right)}^2}} \right]$(6)

    View in Article

    $ {W^{\left( 0 \right)}}\left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right) = \exp \left[ { - \left( {{\bf{\rho }}_{\bf{1}}^{\bf{2}} + {\bf{\rho }}_{\bf{2}}^{\bf{2}}} \right)/\left( {2{\sigma ^2}} \right)} \right]\mu \left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right) $ (7)

    View in Article

    $\mu \left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right) = {\rm{sinc}}\left\{ {c\left[ {{{\left( {{{\bf{\rho }}_{\bf{1}}} - {\rho _0}} \right)}^2} - {{\left( {{{\bf{\rho }}_{\bf{2}}} - {\rho _0}} \right)}^2}} \right]} \right\}$(8)

    View in Article

    $\begin{split} & W\left( {{{{\bf{\rho '}}}_{\bf{1}}},{{{\bf{\rho '}}}_{\bf{2}}},z} \right) =\\ & \quad\frac{{{k^2}}}{{4{{\text{π}} ^2}{z^2}}}\iint {{W^{\left( 0 \right)}}\left( {{{\bf{\rho }}_{\bf{1}}},{{\bf{\rho }}_{\bf{2}}}} \right)}\times \\ & \quad\exp \left[ { - ik\frac{{{{\left( {{{{\bf{\rho '}}}_{\bf{1}}} - {{\bf{\rho }}_{\bf{1}}}} \right)}^2}{\rm{ - }}{{\left( {{{{\bf{\rho '}}}_{\bf{2}}} - {{\bf{\rho }}_{\bf{2}}}} \right)}^2}}}{{2z}}} \right]\times \\ & \quad \left\langle {\exp \left[ {\phi \left( {{{{\bf{\rho '}}}_{\bf{1}}},{{\bf{\rho }}_{\bf{1}}}} \right) + {\phi ^ * }\left( {{{{\bf{\rho '}}}_{\bf{2}}},{{\bf{\rho }}_{\bf{2}}}} \right)} \right]} \right\rangle {{\rm{d}}^2}{{\bf{\rho }}_{\bf{1}}}{{\rm{d}}^2}{{\bf{\rho }}_{\bf{2}}} \end{split} $(9)

    View in Article

    $\begin{split} & \left\langle {\exp \left[ {\phi \left( {{{{\bf{\rho '}}}_{\bf{1}}},{{\bf{\rho }}_{\bf{1}}}} \right) + {\phi ^ * }\left( {{{{\bf{\rho '}}}_{\bf{2}}},{{\bf{\rho }}_{\bf{2}}}} \right)} \right]} \right\rangle=\\ & {\rm{exp}}\left\{ { - 4{{\text{π}} ^2}{k^2}z\int {\int {\kappa {{\varPhi _n}}\left( \kappa \right)} } \left\{ {1 - {J_0}\left[ {\left| {\left( {1 - \gamma } \right){{u}} + \gamma {{q}}} \right|\kappa } \right]} \right\}} \right\}{\rm{d}}\kappa {\rm{d}}\gamma \end{split} $(10)

    View in Article

    $\left\langle {\exp \left[ {\phi \left( {{{{\bf{\rho '}}}_{\bf{1}}},{{\bf{\rho }}_{\bf{1}}}} \right) + {\phi ^ * }\left( {{{{\bf{\rho '}}}_{\bf{2}}},{{\bf{\rho }}_{\bf{2}}}} \right)} \right]} \right\rangle = \exp \left\{ { - P\left[ {{{{u}}^2} + {{uq}} + {{{q}}^2}} \right]} \right\}$(11)

    View in Article

    $W\left( {{{{\bf{\rho '}}}_{\bf{1}}},{{{\bf{\rho '}}}_2},z} \right) = \frac{{{k^2}}}{{4{{\text{π}} ^2}{z^2}}}\int {p\left( v \right){H^ * }\left( {{{{\bf{\rho '}}}_{\bf{1}}},z,v} \right)H\left( {{{{\bf{\rho '}}}_{\bf{2}}},z,v} \right){\rm{d}}v} $(12)

    View in Article

    $\begin{split} & {H^ * }\left( {{{{\bf{\rho '}}}_{\bf{1}}},z,v} \right)H\left( {{{{\bf{\rho '}}}_{\bf{2}}},z,v} \right) = \\ & \quad\frac{\sigma }{{\omega \left( {z,v} \right)}}\exp \left[ { - {{\left( {\frac{{k\sigma }}{{2z}}} \right)}^2}{{\left( {{{{\bf{\rho '}}}_1} - {{{\bf{\rho '}}}_{\bf{2}}}} \right)}^2} - \frac{{ik}}{{2z}}\left( {{{{\bf{\rho '}}}_{\bf{1}}}^2 - {{{\bf{\rho '}}}_{\bf{2}}}^2} \right)} \right] \times \\ & \quad\exp \left\{ { - \frac{1}{{{\omega ^2}\left( {z,v} \right)}}{{\left[ {\frac{{{{{\bf{\rho '}}}_{\bf{1}}} + {{{\bf{\rho '}}}_{\bf{2}}}}}{2} - \frac{{ik{\sigma ^2}}}{{2z}}\left( {{{{\bf{\rho '}}}_{\bf{1}}} - {{{\bf{\rho '}}}_{\bf{2}}}} \right)-\frac{{4{\text{π}} vz{\rho _0}}}{k}} \right]}^2}} \right\} \end{split} $(13)

    View in Article

    ${\left| {H\left( {r,v,z} \right)} \right|^2} = \frac{\sigma }{{\omega \left( {z,v} \right)}}\exp \left[ { - \frac{{{{\left( {r - 4{\text{π}} vz{\rho _0}/k} \right)}^2}}}{{{\omega ^2}\left( {z,v} \right)}}} \right]$(14)

    View in Article

    $\begin{split} & \omega \left( {z,v} \right)= \\ & \quad\sqrt {{{\left( {\dfrac{z}{{k\sigma }}} \right)}^2} + {\sigma ^2}{{\left( {1 - \dfrac{{4{\text{π}} zv}}{k}} \right)}^2} + \dfrac{{{{\text{π}} ^2}{k^2}z}}{3}\int_0^\infty {{\kappa ^3}{\varPhi _n}\left( \kappa \right)} {\rm{d}}\kappa } \end{split} $(15)

    View in Article

    $I\left( {r,z} \right) = W\left( {r,r,z} \right) = \frac{{{k^2}}}{{4{{\text{π}} ^2}{z^2}}}\int {p\left( v \right){{\left| {H\left( {r,z,v} \right)} \right|}^2}{\rm{d}}v} $(16)

    View in Article

    $ {\varPhi _n}\left( \kappa \right)= 0.388 \times {10^{ - 8}}{\varepsilon ^{ - 1/3}}{\kappa ^{ - 11/3}}\left[ {1 + 2.35{{\left( {\kappa \eta } \right)}^{2/3}}} \right]f\left( {\kappa ,w,{\lambda _T}} \right) $(17)

    View in Article

    $f\left( {\kappa ,w,{\lambda _T}} \right) = \frac{{{\lambda _T}}}{{{w^2}}}\left( {{w^2}{e^{ - {A_T}\delta }} + {e^{ - {A_S}\delta }} - 2w{e^{ - {A_{TS}}\delta }}} \right)$(18)

    View in Article

    Wang Mingjun, Zhang Jialin, Wang Jiao. Propagation characteristics of non-uniformly Sinc-correlated blue-green laser beam through oceanic turbulence[J]. Infrared and Laser Engineering, 2020, 49(6): 20190370
    Download Citation