• Journal of Inorganic Materials
  • Vol. 36, Issue 12, 1237 (2021)
Qian LIU*, Jiacheng WANG, Zhenzhen ZHOU, and Xiaoke XU
DOI: 10.15541/jim20210247 Cite this Article
Qian LIU, Jiacheng WANG, Zhenzhen ZHOU, Xiaoke XU. Research Progress on High Throughput Parallel Synthesis of Micro-nano Powders Libraries[J]. Journal of Inorganic Materials, 2021, 36(12): 1237 Copy Citation Text show less
References

[1] J HANAK J. Multiple-sample-concept in materials research - synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 5, 964-971(1970). http://link.springer.com/10.1007/BF00558177

[2] D XIANG X, D SUN X, G BRICENO et al. A combinatorial approach to materials discovery. Science, 268, 1738-1740(1995). https://www.science.org/doi/10.1126/science.268.5218.1738

[3] B VAN DOVER R, D SCHNEEMEYER L, M FLEMING R. Discovery of a useful thin-film dielectric using a composition- spread approach. Nature, 392, 162-164(1998). http://www.nature.com/articles/32381

[4] D XIANG X. Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Annu. Rev. Mater. Sci., 29, 149-171(1999). https://www.annualreviews.org/toc/matsci.1/29/1

[5] H KOINUMA, I TAKEUCHI. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater., 3, 429-438(2004). https://doi.org/10.1038/nmat1157

[6] J AMIS E, D XIANG X, C ZHAO J. Combinatorial materials science: what's new since Edison?. Mrs. Bull., 27, 295-297(2002).

[7] E REDDINGTON, A SAPIENZA, B GURAU et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 280, 1735-1737(1998). https://www.science.org/doi/10.1126/science.280.5370.1735

[8] J SCHEIDTMANN, A WEISS P, F MAIER W. Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology. Appl. Catal. A-Gen., 222, 79-89(2001). https://linkinghub.elsevier.com/retrieve/pii/S0926860X01008316

[9] C LETTMANN, H HINRICHS, F MAIER W. Combinatorial discovery of new photocatalysts for water purification with visible light. Angew. Chem. Int. Ed., 40, 3160-3164(2001). http://doi.wiley.com/10.1002/%28ISSN%291521-3773

[10] G WELSCH F, K STOEWE, F MAIER W. Rapid optical screening technology for direct methanol fuel cell (DMFC) anode and related electrocatalysts. Catal. Today, 159, 108-119(2011). https://linkinghub.elsevier.com/retrieve/pii/S0920586110001720

[11] C DOGAN, K STOEWE, F MAIER W. Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications. ACS Comb. Sci., 17, 164-175(2015). https://pubs.acs.org/doi/10.1021/co500128m

[13] TING-SHAN CHAN, CHIA-CHEN KANG, RU-SHI LIU et al. Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. J. Comb. Chem., 9, 343-346(2007). https://pubs.acs.org/doi/10.1021/cc070006l

[14] LEI CHEN, YIBING FU, GUOBIN ZHANG et al. Optimization of Pr3+, Tb3+, and Sm3+ co-doped (Y0.65Gd0.35)BO3:0.05Eu3+ VUV phosphors through combinatorial approach. J. Comb. Chem., 10, 401-404(2008). https://pubs.acs.org/doi/10.1021/cc700172e

[15] JIANJUN DING, JUN BAO, SONO SUN et al. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J. Comb. Chem., 11, 523-526(2009). https://pubs.acs.org/doi/10.1021/cc9000295

[17] KONG ZHANG, QINGFENG LIU, QIAN LIU et al. Combinatorial optimization of (YxLu1-x-y)3Al5O12:3yCe green-yellow phosphors. J. Comb. Chem., 12, 453-457(2010). https://pubs.acs.org/doi/10.1021/cc1000055

[18] XIAOBIN SU, KONG ZHANG, QIAN LIU et al. Combinatorial optimization of (Lu1-xGdx)3Al5O12:3yCe yellow phosphors as precursors for ceramic scintillators. ACS Comb. Sci., 13, 79-83(2011). https://pubs.acs.org/doi/10.1021/co100025n

[19] FU-HAN TANG, JIAN-DONG ZHUANG, FAN FEI et al. Combinatorial optimization of Ba/Fe-cordierite solid solution (Ba0.05Fe0.1Mg)2Al4Si5O18 for high infrared radiance materials. Chin. J. Chem. Phys., 25, 345-351(2012). http://cps.scitation.org/doi/10.1088/1674-0068/25/03/345-351

[20] QINHUA WEI, JIEQIONG WAN, GUANGHUI LIU et al. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials. ACS Comb. Sci., 17, 217-223(2015). https://pubs.acs.org/doi/10.1021/co500112k

[22] ZHENZHEN ZHOU, QIAN LIU, YANWEN FU et al. Multi-channel fiber optical spectrometer for high-throughput characterization of photoluminescence properties. Rev. Sci. Instrum., 91, 123113(2020). http://aip.scitation.org/doi/10.1063/5.0022845

[23] E AKPORIAYE D, M DAHL I, A KARLSSON et al. Combinatorial approach to the hydrothermal synthesis of zeolites. Angew. Chem. Int. Ed., 37, 609-611(1998).

[24] J KLEIN, W LEHMANN C, W SCHMIDT H et al. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed., 37, 3369-3372(1998). http://doi.wiley.com/10.1002/%28ISSN%291521-3773

[25] M SENKAN S. High-throughput screening of solid-state catalyst libraries. Nature, 394, 350-353(1998). https://doi.org/10.1038/28575

[26] M NEWSAM J, T BEIN, J KLEIN et al. High throughput experimentation for the synthesis of new crystalline microporous solids. Micropor. Mesopor. Mat., 48, 355-365(2001). https://linkinghub.elsevier.com/retrieve/pii/S1387181101003523

[28] YUXUE WEI, AZHU WANG, LINGLING LV et al. Synchrotron infrared spectroscopic high-throughput screening of multi-composite photocatalyst films for air purification. Catal. Sci. Technol., 11, 790-794(2021). http://xlink.rsc.org/?DOI=D0CY02223C

[29] XIAOLE WENG, K COCKCROFT JEREMY, GEOFFREY HYETT et al. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. J. Comb. Chem., 11, 829-834(2009). https://pubs.acs.org/doi/10.1021/cc900041a

[30] RAUL QUESADA-CABRERA, XIAOLE WENG, GEOFF HYET et al. High-throughput continuous hydrothermal synthesis of nanomaterials (Part II): unveiling the as-prepared CexZryYzO2-δ phase diagram. ACS Comb. Sci., 15, 458-463(2013). https://pubs.acs.org/doi/10.1021/co3001346

[31] TIAN LIN, SUELA KELLICI, KENAN GONG et al. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. J. Comb. Chem., 12, 383-392(2010). https://pubs.acs.org/doi/10.1021/cc9001108

[32] J ALEXANDER SAM, TIAN LIN, L BRETT DAN J et al. A combinatorial nanoprecursor route for direct solid state chemistry: discovery and electronic properties of new iron-doped lanthanum nickelates up to La4Ni2FeO10-δ. Solid State Ionics, 225, 176-181(2012). https://linkinghub.elsevier.com/retrieve/pii/S0167273812003025

[33] M GOODALL JOSEPHINE B, DEREK ILLSLEY, ROBERT LINES et al. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants. ACS Comb. Sci., 17, 100-112(2015). https://pubs.acs.org/doi/10.1021/co500109f

[34] D JOHNSON IAN, MECHTHILD LUEBKE, YING WU ON et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J. Power Sources, 302, 410-418(2016). https://linkinghub.elsevier.com/retrieve/pii/S0378775315304559

[35] P HOWARD DOUGAL, PETER MARCHAND, LIAM MCCAFFERTY et al. High-throughput continuous hydrothermal synthesis of transparent conducting aluminum and gallium Co-doped zinc oxides. ACS Comb. Sci., 19, 239-245(2017). https://pubs.acs.org/doi/10.1021/acscombsci.6b00118

[36] R GROVES ALEXANDRA, E ASHTON THOMAS, A DARR JAWWAD. High throughput synthesis and screening of oxygen reduction catalysts in the MTiO3 (M=Ca, Sr, Ba) perovskite phase diagram. ACS Comb. Sci., 22, 750-756(2020). https://pubs.acs.org/doi/10.1021/acscombsci.0c00094

[37] K SURESH, C PATIL K. Preparation and properties of fine particle nickel zinc ferrites-a comparative study of combustion and precursor methods. J. Solid State Chem., 99, 12-17(1992). https://linkinghub.elsevier.com/retrieve/pii/0022459692902832

[38] J KINGSLEY J, R PEDERSON L. Combustion synthesis of perovskite LnCrO3 powders using ammonium dichromate. Mater. Lett., 18, 89-96(1993). https://linkinghub.elsevier.com/retrieve/pii/0167577X93900634

[39] L LUO Z, B GENG, J BAO et al. Parallel solution combustion synthesis for combinatorial materials studies. J. Comb. Chem., 7, 942-946(2005). https://pubs.acs.org/doi/10.1021/cc050068g

[40] H LU, A SCHMIDT M, F JENSEN K. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip, 1, 22-28(2001). http://xlink.rsc.org/?DOI=b104037p

[41] DONGFEI LIU, SALVATORE CITO, YUEZHOU ZHANG et al. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater., 27, 2298-2304(2015). http://doi.wiley.com/10.1002/adma.v27.14

[43] HAO ZHANG, JING-JING WANG, JIE FAN et al. Microfluidic chip-based analytical system for rapid screening of photocatalysts. Talanta, 116, 946-950(2013). https://linkinghub.elsevier.com/retrieve/pii/S003991401300670X

[48] YANG HU, BIN LIU, YATING WU et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform. Front. Chem., 8, 579828(2020). https://www.frontiersin.org/articles/10.3389/fchem.2020.579828/full

[49] BONGHYUN LEE, SANGJUN LEE, GON JEONG HYUNG et al. Solid-state combinatorial screening of (Sr,Ca,Ba,Mg)2Si5N8:Eu2+ phosphors. ACS Comb. Sci., 13, 154-158(2011). https://pubs.acs.org/doi/10.1021/co100046u

[50] GANG HE, GUANGHUA LIU, ZENGCHAO YANG et al. Preparation of YAG glass-ceramic by combustion synthesis under high gravity. Ceram. Int., 40, 15265-15271(2014). https://linkinghub.elsevier.com/retrieve/pii/S0272884214010554

[51] ZENGCHAO YANG, GUANGHUA LIU, JIANGTAO LI et al. Preparation of transparent Y2O3-Al2O3-SiO2 glasses by high-gravity combustion synthesis with heating assistance. J. Am. Ceram. Soc., 95, 1799-1802(2012). http://doi.wiley.com/10.1111/jace.2012.95.issue-6

[52] GUANGHUA LIU, JIANGTAO LI, BIN HE. Melt-casting of Si-Al-Y-O glasses and glass-ceramics by combustion synthesis under high gravity. J. Non-cryst. Solids., 357, 1764-1767(2011). https://linkinghub.elsevier.com/retrieve/pii/S0022309311001220

[53] SHUANG SHUANG, HONGHUA LI, GANG HE et al. High-throughput automatic batching equipment for solid state ceramic powders. Rev. Sci. Instrum., 90, 083904(2019). http://aip.scitation.org/doi/10.1063/1.5114839

[55] HONGHUA LI, GANG HE, YONG LI et al. Combinatorial synthesis of multiple ZrxTi1-xC by electric field-assisted combustion synthesis. J. Eur. Ceram. Soc., 41, 1020-1024(2021). https://linkinghub.elsevier.com/retrieve/pii/S0955221920306713

Qian LIU, Jiacheng WANG, Zhenzhen ZHOU, Xiaoke XU. Research Progress on High Throughput Parallel Synthesis of Micro-nano Powders Libraries[J]. Journal of Inorganic Materials, 2021, 36(12): 1237
Download Citation