• Photonics Research
  • Vol. 8, Issue 7, 1110 (2020)
Rongqiao Wan1, Xiang Gao1, Liancheng Wang1、2、5、*, Shuo Zhang2、3, Xiongbin Chen4, Zhiqiang Liu2、3, Xiaoyan Yi2、3、6、*, Junxi Wang2、3, Junhui Li1, Wenhui Zhu1, and Jinmin Li2、3
Author Affiliations
  • 1State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
  • 2Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 3College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • 4State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 5e-mail: liancheng_wang@csu.edu.cn
  • 6e-mail: spring@semi.ac.cn
  • show less
    DOI: 10.1364/PRJ.392046 Cite this Article Set citation alerts
    Rongqiao Wan, Xiang Gao, Liancheng Wang, Shuo Zhang, Xiongbin Chen, Zhiqiang Liu, Xiaoyan Yi, Junxi Wang, Junhui Li, Wenhui Zhu, Jinmin Li. Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth[J]. Photonics Research, 2020, 8(7): 1110 Copy Citation Text show less
    References

    [1] P. H. Pathak, X. Feng, P. Hu, P. Mohapatra. Visible light communication, networking, and sensing: a survey, potential and challenges. Commun. Surveys Tuts., 17, 2047-2077(2015).

    [2] H. Haas, L. Yin, Y. Wang, C. Chen. What is LiFi?. J. Lightwave Technol., 34, 1533-1544(2016).

    [3] J. Cho, J. H. Park, J. K. Kim, E. F. Schubert. White light-emitting diodes: history, progress, and future. Laser Photon. Rev., 11, 1600147(2017).

    [4] R. Wan, S. Zhang, Z. Liu, X. Yi, L. Wang, J. Wang, J. Li, W. Zhu, J. Li. Simultaneously improve the luminous efficiency and color-rendering index of GaN-based white-light-emitting diodes using metal localized surface plasmon resonance. Opt. Lett., 44, 4155-4158(2019).

    [5] S. Pimputkar, J. S. Speck, S. P. DenBaars, S. Nakamura. Prospects for LED lighting. Nat. Photonics, 3, 180-182(2009).

    [6] S. Rajbhandari, J. J. D. McKendry, J. Herrnsdorf, H. Chun, G. Faulkner, H. Haas, I. M. Watson, D. O’Brien, M. D. Dawson. A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol., 32, 023001(2017).

    [7] D. Xue, C. Ruan, Y. Zhang, H. Chen, X. Chen, C. Wu, C. Zheng, H. Chen, W. W. Yu. Enhanced bandwidth of white light communication using nanomaterial phosphors. Nanotechnology, 29, 455708(2018).

    [8] T. C. Lin, Y. T. Chen, Y. F. Yin, Z. X. You, H. Y. Kao, C. Y. Huang, Y. H. Lin, C. T. Tsai, G. R. Lin, J. J. Huang. Large-signal modulation performance of light-emitting diodes with photonic crystals for visible light communication. IEEE Trans. Electron. Dev., 65, 4375-4380(2018).

    [9] N. C. George, K. A. Denault, R. Seshadri. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res., 43, 481-501(2013).

    [10] H. Chun, P. Manousiadis, S. Rajbhandari, D. A. Vithanage, G. Faulkner, D. Tsonev, J. J. D. McKendry, S. Videv, E. Xie, E. Gu, M. D. Dawson, H. Haas, G. A. Turnbull, I. D. W. Samuel, D. O’Brien. Visible light communication using a blue GaN μLED and fluorescent polymer colour converter. IEEE Photon. Technol. Lett., 26, 2035-2038(2014).

    [11] S. Mei, X. Liu, W. Zhang, R. Liu, L. Zheng, R. Guo, P. Tian. High-bandwidth white-light system combining a micro-LED with perovskite quantum dots for visible light communication. ACS Appl. Mater. Interfaces, 10, 5641-5648(2018).

    [12] Z. Tian, P. Tian, X. Zhou, G. Zhou, S. Mei, W. Zhang, X. Zhang, D. Li, D. Zhou, R. Guo, S. Qu, A. L. Rogach. Ultraviolet-pumped white light emissive carbon dot based phosphors for light-emitting devices and visible light communication. Nanoscale, 11, 3489-3494(2019).

    [13] H. Han, H. Lin, C. Lin, W. Chong, J. Li, K. Chen, P. Yu, T. Chen, H. Chen, K. Lau, H. Kuo. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express, 23, 32504-32515(2015).

    [14] H. Lin, C. Sher, D. Hsieh, X. Chen, H. P. Chen, T. Chen, K. Lau, C. Chen, C. Lin, H. Kuo. Optical cross-talk reduction in a quantum-dot-based full-color micro-light-emitting-diode display by a lithographic-fabricated photoresist mold. Photon. Res., 5, 411-416(2017).

    [15] H. Cao, S. Lin, Z. Ma, X. Li, J. Li, L. Zhao. Color converted white light-emitting diodes with 637.6  MHz modulation bandwidth. IEEE Electron Device Lett., 40, 267-270(2018).

    [16] D. V. Dinh, Z. Quan, B. Roycroft, P. J. Parbrook, B. Corbett. GHz bandwidth semipolar (112¯2) InGaN/GaN light-emitting diodes. Opt. Lett., 41, 5752-5755(2016).

    [17] A. Rashidi, M. Monavarian, A. Aragon, A. Rishinaramangalam, D. Feezell. Nonpolar m-plane InGaN/GaN micro-scale light-emitting diode with 1.5  GHz modulation bandwidth. IEEE Electron Device Lett., 39, 520-523(2018).

    [18] R. G. Baets, D. G. Delbeke, R. Bockstaele, P. Bienstman. Resonant cavity light-emitting diodes: a review. Proc. SPIE, 4996, 42-49(2003).

    [19] S. H. Chen, C. Shen, T. Wu, Z. Liao, L. Chen, J. Zhou, C. Lee, C. Lin, C. Lin, C. Sher, P. Lee, A. Tzou, Z. Chen, H. Kuo. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photon. Res., 7, 416-422(2019).

    [20] N. Chi, M. Zhang, Y. Zhou, J. Zhao. 3.375-Gb/s RGB-LED based WDM visible light communication system employing PAM-8 modulation with phase shifted Manchester coding. Opt. Express, 24, 21663-21673(2016).

    [21] H. Li, P. Li, J. Kang, J. Ding, J. Ma, Y. Zhang, X. Yi, G. Wang. Broadband full-color monolithic InGaN light-emitting diodes by selfassembled InGaN quantum dots. Sci. Rep., 6, 35217(2016).

    [22] T. Li, A. M. Fischer, Q. Y. Wei, F. A. Ponce, T. Detchprohm, C. Wetzel. Carrier localization and nonradiative recombination in yellow emitting InGaN quantum wells. Appl. Phys. Lett., 96, 031906(2010).

    [23] P. Li, H. Li, Z. Li, J. Kang, X. Yi, J. Li, G. Wang. Strong carrier localization effect in carrier dynamics of 585 nm InGaN amber light emitting diodes. J. Appl. Phys., 117, 073101(2015).

    [24] G. Weng, W. Zhao, S. Chen, H. Akiyama, Z. Li, J. Liu, B. Zhang. Strong localization effect and carrier relaxation dynamics in self-assembled InGaN quantum dots emitting in the green. Nanoscale Res. Lett., 10, 31(2015).

    [25] Y. Narukawa, Y. Kawakami, S. Fujita, S. Nakamura. Dimensionality of excitons in laser-diode structures composed of InxGa1-xN multiple quantum wells. Phys. Rev. B, 59, 10283-10288(1999).

    [26] S. Anders, C. S. Kim, B. Klein, M. W. Keller, R. P. Mirin, A. G. Norman. Bimodal size distribution of self-assembled InxGa1-xAs quantum dots. Phys. Rev. B, 66, 125309(2002).

    [27] L. Liu, L. Wang, N. Liu, W. Yang, D. Li, W. Chen, Z. C. Feng, Y.-C. Lee, I. Ferguson, X. Hu. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes. J. Appl. Phys., 112, 083101(2012).

    [28] Z. Li, J. Kang, B. Wang, H. Li, Y. Weng, Y. Lee, Z. Liu, X. Yi, Z. Feng, G. Wang. Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells. J. Appl. Phys., 115, 083112(2014).

    [29] K. Ikeda, S. Horiuchi, T. Tanaka, W. Susaki. Design parameters of frequency response of GaAs-(Ga,Al)As double heterostructure LED’s for optical communications. IEEE Trans. Electron. Dev., 24, 1001-1005(1977).

    [30] H. L. Minh, D. O’Brien, G. Faulkner, L. Zeng, K. Lee, D. Jung, Y. Oh, E. T. Won. 100  Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photon. Technol. Lett., 21, 1063-1065(2009).

    [31] J. Grubor, S. Randel, K.-D. Langer, J. W. Walewski. Broadband information broadcasting using LED-based interior lighting. J. Lightwave Technol., 26, 3883-3892(2009).

    [32] C. Ruan, Y. Zhang, M. Lu, C. Ji, C. Sun, X. Chen, H. Chen, V. L. Colvin, W. W. Yu. White light-emitting diodes based on AgInS2/ZnS quantum dots with improved bandwidth in visible light communication. Nanomaterials, 6, 13(2016).

    [33] H. Huang, H. Wu, C. Huang, Z. Chen, C. Wang, Z. Yang, H. Wang. Characteristics of micro size light emitting diode for illumination and visible light communication. Phys. Status Solidi A, 215, 1800484(2018).

    CLP Journals

    [1] Rongqiao Wan, Guoqiang Li, Xiang Gao, Zhiqiang Liu, Junhui Li, Xiaoyan Yi, Nan Chi, Liancheng Wang. Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer[J]. Photonics Research, 2021, 9(7): 1213

    [2] Zhenhuan Tian, Qiang Li, Xuzheng Wang, Mingyin Zhang, Xilin Su, Ye Zhang, Yufeng Li, Feng Yun, S. W. Ricky Lee. Phosphor-free microLEDs with ultrafast and broadband features for visible light communications[J]. Photonics Research, 2021, 9(4): 452

    Rongqiao Wan, Xiang Gao, Liancheng Wang, Shuo Zhang, Xiongbin Chen, Zhiqiang Liu, Xiaoyan Yi, Junxi Wang, Junhui Li, Wenhui Zhu, Jinmin Li. Phosphor-free single chip GaN-based white light emitting diodes with a moderate color rendering index and significantly enhanced communications bandwidth[J]. Photonics Research, 2020, 8(7): 1110
    Download Citation