• Infrared and Laser Engineering
  • Vol. 49, Issue 12, 20201052 (2020)
Wenyu Du1, Zhijia Hu2、*, Zhigang Cao2, Guosheng Zhang1, Yan Wang1, Weidong Luo1, and Benli Yu1
Author Affiliations
  • 1Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Materials Science, Anhui University, Hefei 230601, China
  • 2Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of Education, School of Physics and Materials Science, Anhui University, Hefei 230601, China
  • show less
    DOI: 10.3788/IRLA20201052 Cite this Article
    Wenyu Du, Zhijia Hu, Zhigang Cao, Guosheng Zhang, Yan Wang, Weidong Luo, Benli Yu. Review of random laser research (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201052 Copy Citation Text show less
    References

    [1] R V Ambartsumyan, P G Kryukov, V C Letokhov. Dynamics of emission line narrowing for a laser with nonresonant feedback. Journal of Experimental and Theoretical Physics, 6, 1129-1134(1967).

    [2] R V Ambartsumyan, P G Kryukov, V C Letokhov. Statistical emission properties of a nonresonant Feedback laser. Journal of Experimental and Theoretical Physics, 6, 1109-1114(1968).

    [3] V S Letokhov. Generation of light by a scattering medium with negative resonance absorption. Journal of Experimental and Theoretical Physics, 4, 835-840(1968).

    [4] N M Lawandy, R M Balachandran, A S L Gomes. Laser action in strongly scattering media. Nature, 368, 436-438(1994).

    [5] D S Wiersma, M P Van-Albada, A Lagendijk. Random laser?. Nature, 373, 203-204(1995).

    [6] D S Wiersma, A Lagendijk. Light diffusion with gain and random lasers. Physical Review E, 54, 4256-4265(1996).

    [7] H Cao, Y G Zhao, H C Ong. Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films. Applied Physics Letters, 73, 3656-3658(1998).

    [8] H Cao, Y G Zhao, S T Ho. Random laser action in semiconductor powder. Physical Review Letters, 82, 2278-2281(1999).

    [9] Y Wang, X Yang, H Li. Bright single-mode random laser from a concentrated solution of π-conjugated polymers. Optics Letters, 41, 269-272(2016).

    [10] Q Song, L Liu, S Xiao. Unidirectional high intensity narrow-linewidth lasing from a planar random microcavity laser. Physical Review Letters, 96, 033902(2006).

    [11] J Xia, K Xie, J Ma. The transition from incoherent to coherent random laser in defect waveguide based on organic/inorganic hybrid laser dye. Nanophotonics, 7, 1341-1350(2018).

    [12] C Gollner, J Ziegler, L Protesescu. Random lasing with systematic threshold behavior in films of CdSe/CdS core/thick-shell colloidal quantum dots. ACS Nano, 9, 9792-9801(2015).

    [13] Z Hu, Q Zhang, B Miao. Coherent random fiber laser based on nanoparticles scattering in the extremely weakly scattering regime. Physical Review Letters, 109, 253901(2012).

    [14] H Fujiwara, T Suzuki, R Niyuki. ZnO nanorod array random lasers fabricated by a laser-induced hydrothermal synthesis. New Journal of Physics, 18, 103046(2016).

    [15] Y Wan, L Deng. Pump-controlled plasmonic random lasers from dye-doped nematic liquid crystals with TiN nanoparticles in non-oriented cells. Applied Sciences, 10, 199(2020).

    [16] J Azkargorta, M Bettinelli, I Iparraguirre. Random lasing in Nd:LuVO4 crystal powder. Optics Express, 19, 19591-19599(2011).

    [17] H Fujiwara, R Niyuki, Y Ishikawa. Low-threshold and quasi-single-mode random laser within a submicrometer-sized ZnO spherical particle film. Applied Physics Letters, 102, 061110(2013).

    [18] Z Hu, B Miao, T Wang. Disordered microstructure polymer optical fiber for stabilized coherent random fiber laser. Optics Letters, 38, 4644-4647(2013).

    [19] S Perumbilavil, A Piccardi, R Barboza. Beaming random lasers with soliton control. Nature communications, 9, 1-7(2018).

    [20] W C Chen, J H Shiao, T L Tsai. Multiple scattering from electrospun nanofibers with embedded silver nanoparticles of tunable shape for random lasers and white-light-emitting diodes. ACS Applied Materials & Interfaces, 12, 2783-2792(2019).

    [21] X Tang, Y Bian, Z Liu. Room-temperature up-conversion random lasing from CsPbBr3 quantum dots with TiO2 nanotubes. Optics Letters, 44, 4706-4709(2019).

    [22] X Li, H Liu, X Xu. Lotus-leaf-inspired flexible and tunable random laser. ACS Applied Materials & Interfaces, 12, 10050-10057(2020).

    [23] X Zhang, S Yan, J Tong. Perovskite random lasers on fiber facet. Nanophotonics, 9, 935-941(2020).

    [24] H Cao. Lasing in random media. Waves in Random Media, 13, R1-R39(2003).

    [25] H Lu, C Wei, Q Zhang. Wide tunable laser based on electrically regulated bandwidth broadening in polymer-stabilized cholesteric liquid crystal. Photonics Research, 7, 137-143(2019).

    [26] H Lu, L Yang, L Xia. Band-edge-enhanced tunable random laser using a polymer-stabilised cholesteric liquid crystal. Liquid Crystals, 1-8(2020).

    [27] K Firdaus, T Nakamura, S Adachi. Improved lasing characteristics of ZnO/organic-dye random laser. Applied Physics Letters, 100, 171101(2012).

    [28] O Popov, A Zilbershtein, D Davidov. Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength. Applied Physics Letters, 89, 191116(2006).

    [29] C S Wang, H Y Lin, J M Lin. Surface-plasmon-enhanced ultraviolet random lasing from ZnO nanowires assisted by Pt nanoparticles. Applied Physics Express, 5, 062003(2012).

    [30] H Fan, Y Mu, C Liu. Random lasing of CsPbBr3 perovskite thin films pumped by modulated electron beam. Chinese Optics Letters, 18, 011403(2020).

    [31] F Lahoz, A Acebes, T González-Hernández. Random lasing in brain tissues. Organic Electronics, 75, 105389(2019).

    [32] Z Z Zhang, L C Yin, X L Xu. Near-field scattering enhancement of Perylene based aggregates for random lasing. Chinese Journal of Chemical Physics, 32, 739-746(2019).

    [33] Y T Hsu, Y Y Lin, Y Z Chen. 3D printed random lasers. Advanced Materials Technologies, 5, 1900742(2020).

    [34] L Yin, Y Liang, B Yu. Quantitative analysis of “Δl=lslg” to coherent random lasing in solution systems with a series of solvents ordered by refractive index. RSC Advances, 6, 98066-98070(2016).

    [35] X Wu, H Cao. Statistical studies of random-lasing modes and amplified spontaneous-emission spikes in weakly scattering systems. Physical Review A, 77, 013832(2008).

    [36] H Cao, J Y Xu, S H Chang. Transition from amplified spontaneous emission to laser action in strongly scattering media. Physical Review E, 61, 1985(2000).

    [37] J Andreasen, H Cao. Numerical study of amplified spontaneous emission and lasing in random media. Physical Review A, 82, 063835(2010).

    [38] J Dingjan, E Altewischer, Exter M P van. Experimental observation of wave chaos in a conventional optical resonator. Physical Review Letters, 88, 064101(2002).

    [39] K M Frahm, H Schomerus, M Patra. Large Petermann factor in chaotic cavities with many scattering channels. EPL (Europhysics Letters), 49, 48-54(2000).

    [40] T S Misirpashaev, C W J Beenakker. Lasing threshold and mode competition in chaotic cavities. Physical Review A, 57, 2041-2045(1998).

    [41] G Hackenbroich, C Viviescas, B Elattari. Photocount statistics of chaotic lasers. Physical Review Letters, 86, 5262-5265(2001).

    [42] M Patra, H Schomerus, C W J Beenakker. Quantum-limited linewidth of a chaotic laser cavity. Physical Review A, 61, 023810(2000).

    [43] M Patra. Theory for photon statistics of random lasers. Physical Review A, 65, 043809(2002).

    [44] C W J Beenakker. Thermal radiation and amplified spontaneous emission from a random medium. Physical Review Letters, 81, 1829-1832(1998).

    [45] G Hackenbroich, C Viviescas, F Haake. Field quantization for chaotic resonators with overlapping modes. Physical Review Letters, 89, 083902(2002).

    [46] M Patra, C W J Beenakker. Excess noise for coherent radiation propagating through amplifying random media. Physical Review A, 60, 4059-4066(1999).

    [47] M Patra, C W J Beenakker. Propagation of squeezed radiation through amplifying or absorbing random media. Physical Review A, 61, 063805(2000).

    [48] C M Soukoulis, X Jiang, J Y Xu. Dynamic response and relaxation oscillations in random lasers. Physical Review B, 65, 041103(2002).

    [49] Y Ling, H Cao, A L Burin. Investigation of random lasers with resonant feedback. Physical Review A, 64, 063808(2001).

    [50] X Jiang, C M Soukoulis. Localized random lasing modes and a path for observing localization. Physical Review E, 65, 025601(2002).

    [51] P Sebbah, C Vanneste. Random laser in the localized regime. Physical Review B, 66, 144202(2002).

    [52] C Vanneste, P Sebbah. Selective excitation of localized modes in active random media. Physical Review Letters, 87, 183903(2001).

    [53] V M Apalkov, M E Raikh, B Shapiro. Random resonators and prelocalized modes in disordered dielectric films. Physical Review Letters, 89, 016802(2002).

    [54] X Jiang, C M Soukoulis. Time dependent theory for random lasers. Physical Review Letters, 85, 70-73(2000).

    [55] J Herrmann, B Wilhelmi. Mirrorless laser action by randomly distributed feedback in amplifying disordered media with scattering centers. Applied Physics B: Lasers & Optics, 66, 305-312(1998).

    [56] A L Burin, M A Ratner, H Cao. Random laser in one dimension. Physical Review Letters, 88, 093904(2002).

    [57] D S Wiersma. The physics and applications of random lasers. Nature Physics, 4, 359-367(2008).

    [58] P W Anderson. Absence of diffusion in certain random lattices. Physical Review, 109, 1492-1505(1958).

    [59] E Abrahams, P W Anderson, D C Licciardello. Scaling theory of localization: Absence of quantum diffusion in two dimensions. Physical Review Letters, 42, 673-676(1979).

    [60] A F Ioffe, A R Regel. Non-crystalline, amorphous and liquid electronic semiconductors. Prog Semicond, 4, 237-291(1960).

    [61] O Keller. On the theory of spatial localization of photons. Physics Reports, 411, 1-232(2005).

    [62] S John. Localization of light. Phys Today, 44, 32-40(1991).

    [63] S He, J D Maynard. Detailed measurements of inelastic scattering in Anderson localization. Physical Review Letters, 57, 3171-3174(1986).

    [64] B Crosignani, A Sa’ar, A Yariv. Coherent backscattering and localization in a single-mode fiber with random imperfections. Physical Review A, 43, 3168(1991).

    [65] Z Q Zhang, P Sheng. Wave localization in random networks. Physical Review B, 49, 83(1994).

    [66] A Szameit, P Zeil, F Dreisow. Wave localization at the boundary of disordered photonic lattices. Optics Letters, 35, 1172-1174(2010).

    [67] D M Jović, Y S Kivshar, C Denz. Anderson localization of light near boundaries of disordered photonic lattices. Physical Review A, 83, 033813(2011).

    [68] S Karbasi, C R Mirr, P G Yarandi. Observation of transverse Anderson localization in an optical fiber. Optics Letters, 37, 2304-2306(2012).

    [69] P Pradhan, N Kumar. Localization of light in coherently amplifying random media. Physical Review B, 50, 9644(1994).

    [70] N Kumar, P Pradhan, A M Jayannavar. Coherently amplifying random medium: Statistics of super-reflection. Superlattices and Microstructures, 23, 853-858(1998).

    [71] M Störzer, P Gross, C M Aegerter. Observation of the critical regime near Anderson localization of light. Physical Review Letters, 96, 063904(2006).

    [72] M A Illarramendi, C Cascales, I Aramburu. Characterization of light propagation in NdxY1-xAl(BO3)4 laser crystal powders. Optical Materials, 30, 126-128(2007).

    [73] X Wu, W Fang, A Yamilov. Random lasing in weakly scattering systems. Physical Review A, 74, 053812(2006).

    [74] S Li, Z J Wang, L S Chen. Collective behavior and disorder-induced resonator of random lasers. Applied Physics Letters, 86, 171109(2005).

    [75] S Ferjani, L Sorriso-Valvo, Luca A De. Statistical analysis of random lasing emission properties in nematic liquid crystals. Physical Review E, 78, 011707(2008).

    [76] C Conti, M Leonetti, A Fratalocchi. Condensation in disordered lasers: Theory, 3D+1 simulations, and experiments. Physical Review Letters, 101, 143901(2008).

    [77] G Ruocco, B Abaie, W Schirmacher. Disorder-induced single-mode transmission. Nature Communications, 8, 1-6(2017).

    [78] L Hu, K Xie, Z Hu. Experimental observation of wave localization at the Dirac frequency in a two-dimensional photonic crystal microcavity. Optics Express, 26, 8213-8223(2018).

    [79] B Abaie, M Peysokhan, J Zhao. Disorder-induced high-quality wavefront in an Anderson localizing optical fiber. Optica, 5, 984-987(2018).

    [80] W Schirmacher, B Abaie, A Mafi. What is the right theory for Anderson localization of light? An experimental test. Physical Review Letters, 120, 067401(2018).

    [81] H Cao, X Jiang, Y Ling. Mode repulsion and mode coupling in random lasers. Physical Review B, 67, 161101(2003).

    [82] der Molen K L van, A P Mosk, A Lagendijk. Intrinsic intensity fluctuations in random lasers. Physical Review A, 74, 053808(2006).

    [83] J Fallert, R J B Dietz, J Sartor. Co-existence of strongly and weakly localized random laser modes. Nature Photonics, 3, 279-282(2009).

    [84] P Stano, P Jacquod. Suppression of interactions in multimode random lasers in the Anderson localized regime. Nature Photonics, 7, 66-71(2013).

    [85] Synergetics H H. Selfganizing Systems[M] Boston, MA: Springer, 1987: 417434.

    [86] A Gordon, B Vodonos, V Smulakovski. Melting and freezing of light pulses and modes in mode-locked lasers. Optics Express, 11, 3418-3424(2003).

    [87] A Gordon, B Fischer. Phase transition theory of pulse formation in passively mode-locked lasers with dispersion and Kerr nonlinearity. Optics Communications, 223, 151-156(2003).

    [88] R Weill, A Rosen, A Gordon. Critical behavior of light in mode-locked lasers. Physical Review Letters, 95, 013903(2005).

    [89] F T Arecchi. Optical morphogenesis: pattern formation and competition in nonlinear optics. Physica D: Nonlinear Phenomena, 86, 297-322(1995).

    [90] F T Arecchi, S Boccaletti, P L Ramazza. Pattern formation and competition in nonlinear optics. Physics Reports, 318, 1-83(1999).

    [91] B Vodonos, R Weill, A Gordon. Formation and annihilation of laser light pulse quanta in a thermodynamic-like pathway. Physical Review Letters, 93, 153901(2004).

    [92] L Florescu, S John. Photon statistics and coherence in light emission from a random laser. Physical Review Letters, 93, 013602(2004).

    [93] L Angelani, C Conti, G Ruocco. Glassy behavior of light. Physical Review Letters, 96, 065702(2006).

    [94] L Angelani, C Conti, G Ruocco. Glassy behavior of light in random lasers. Physical Review B, 74, 104207(2006).

    [95] F Antenucci, C Conti, A Crisanti. General phase diagram of multimodal ordered and disordered lasers in closed and open cavities. Physical Review Letters, 114, 043901(2015).

    [96] F Antenucci, A Crisanti, L Leuzzi. Complex spherical 2+4 spin glass: A model for nonlinear optics in random media. Physical Review A, 91, 053816(2015).

    [97] N Ghofraniha, I Viola, Maria F Di. Experimental evidence of replica symmetry breaking in random lasers. Nature Communications, 6, 1-8(2015).

    [98] A S L Gomes, B C Lima, P I R Pincheira. Glassy behavior in a one-dimensional continuous-wave erbium-doped random fiber laser. Physical Review A, 94, 011801(2016).

    [99] A S L Gomes, E P Raposo, A L Moura. Observation of Lévy distribution and replica symmetry breaking in random lasers from a single set of measurements. Scientific Reports, 6, 27987(2016).

    [100] C B Araújo, A S L Gomes, E P Raposo. Lévy statistics and the glassy behavior of light in random fiber lasers. Applied Sciences, 7, 644(2017).

    [101] J Xia, J He, K Xie. Replica symmetry breaking in FRET‐assisted random laser based on electrospun polymer fiber. Annalen Der Physik, 531, 1900066(2019).

    [102] Matos C J S de, L S Menezes, A M Brito-Silva. Random fiber laser. Physical Review Letters, 99, 153903(2007).

    [103] Exter M P Van, G Nienhuis, J P Woerdman. Two simple expressions for the spontaneous emission factor β. Physical Review A, 54, 3553(1996).

    [104] Z Hu, H Zheng, L Wang. Random fiber laser of POSS solution-filled hollow optical fiber by end pumping. Optics Communications, 285, 3967-3970(2012).

    [105] Z Hu, P Gao, K Xie. Wavelength control of random polymer fiber laser based on adaptive disorder. Optics Letters, 39, 6911-6914(2014).

    [106] W L Zhang, M Y Zheng, R Ma. Fiber-type random laser based on a cylindrical waveguide with a disordered cladding layer. Scientific Reports, 6, 26473(2016).

    [107] S K Turitsyn, S A Babin, D V Churkin. Random distributed feedback fibre lasers. Physics Reports, 542, 133-193(2014).

    [108] N Lizárraga, N P Puente, E I Chaikina. Single-mode Er-doped fiber random laser with distributed Bragg grating feedback. Optics Express, 17, 395-404(2009).

    [109] O Shapira, B Fischer. Localization of light in a random-grating array in a single-mode fiber. JOSA B, 22, 2542-2552(2005).

    [110] M Gagné, L Bojor, R Maciejko. Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry. Optics Express, 16, 21550-21557(2008).

    [111] M Gagné, R Kashyap. Random fiber Bragg grating Raman fiber laser. Optics Letters, 39, 2755-2758(2014).

    [112] L Wang, X Dong, P P Shum. Random laser with multiphase-shifted Bragg grating in Er/Yb-codoped fiber. Journal of Lightwave Technology, 33, 95-99(2015).

    [113] S R Abdullina, A A Vlasov, I A Lobach. Single-frequency Yb-doped fiber laser with distributed feedback based on a random FBG. Laser Physics Letters, 13, 075104(2016).

    [114] Z Hu, R Ma, X Zhang. Weak feedback assisted random fiber laser from 45°-tilted fiber Bragg grating. Optics Express, 27, 3255-3263(2019).

    [115] D V Churkin, S A Babin, A E El-Taher. Raman fiber lasers with a random distributed feedback based on Rayleigh scattering. Physical Review A, 82, 033828(2010).

    [116] Agrawal G P. FiberOptic Communication Systems[M]. US: John Wiley & Sons, 2012.

    [117] Babin S A. Rom fiber laser based on Rayleigh scattering: Basic principles experimental results[C]Photonics Global Conference, IEEE, 2010: 15.

    [118] Hulst H C, Hulst H C. Light Scattering by Small Particles[M]. US: Courier Cpation, 1981.

    [120] Boyd R W. Nonlinear Optics[M]. 3rd ed. US: Elsevier, 2008.

    [122] C R Giles, E Desurvire. Modeling erbium-doped fiber amplifiers. Journal of Lightwave Technology, 9, 271-283(1991).

    [123] A A Fotiadi. An incoherent fibre laser. Nature Photonics, 4, 204-205(2010).

    [124] J Ye, Y Zhang, J Xu. Broadband pumping enabled flat-amplitude multi-wavelength random Raman fiber laser. Optics Letters, 45, 1786-1789(2020).

    [125] J Xu, J Wu, J Ye. Optical rogue wave in random fiber laser. Photonics Research, 8, 1-7(2020).

    [126] C Kharif, E Pelinovsky. Physical mechanisms of the rogue wave phenomenon. European Journal of Mechanics B/Fluids, 22, 603-634(2003).

    [127] O A Gorbunov, S Sugavanam, I D Vatnik. Poisson distribution of extreme events in radiation of random distributed feedback fiber laser. Optics Letters, 45, 2375-2378(2020).

    [128] S A Babin, A E El-Taher, P Harper. Tunable random fiber laser. Physical Review A, 84, 021805(2011).

    [129] L Zhang, H Jiang, X Yang. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser. Optics Letters, 41, 215-218(2016).

    [130] L Zhang, H Jiang, X Yang. Nearly-octave wavelength tuning of a continuous wave fiber laser. Scientific Reports, 7, 42611(2017).

    [131] Z Hu, J Xia, Y Liang. Tunable random polymer fiber laser. Optics Express, 25, 18421-18430(2017).

    [132] Z Xie, K Xie, T Hu. Multi-wavelength coherent random laser in bio-microfibers. Optics Express, 28, 5179-5188(2020).

    [133] S Perumbilavil, A Piccardi, O Buchnev. Soliton-assisted random lasing in optically-pumped liquid crystals. Applied Physics Letters, 109, 161105(2016).

    [134] X Du, H Zhang, X Wang. Multiwavelength Raman fiber laser based on polarization maintaining fiber loop mirror and random distributed feedback. Laser Physics Letters, 12, 045106(2015).

    [135] Y Y Zhu, W L Zhang, Y Jiang. Tunable multi-wavelength fiber laser based on random Rayleigh back-scattering. IEEE Photonics Technology Letters, 25, 1559-1561(2013).

    [136] S Sugavanam, Z Yan, V Kamynin. Multiwavelength generation in a random distributed feedback fiber laser using an all fiber Lyot filter. Optics Express, 22, 2839-2844(2014).

    [137] C Huang, X Dong, N Zhang. Multiwavelength Brillouin-erbium random fiber laser incorporating a chirped fiber Bragg grating. IEEE Journal of Selected Topics in Quantum Electronics, 20, 294-298(2014).

    [138] C Huang, X Dong, S Zhang. Cascaded random fiber laser based on hybrid Brillouin-erbium fiber gains. IEEE Photonics Technology Letters, 26, 1287-1290(2014).

    [139] Z Wang, H Wu, M Fan. Broadband flat-amplitude multiwavelength Brillouin-Raman fiber laser with spectral reshaping by Rayleigh scattering. Optics Express, 21, 29358-29363(2013).

    [140] H Wu, Z Wang, X Jia. Flat amplitude multiwavelength Brillouin–Raman random fiber laser with a half-open cavity. Applied Physics B, 112, 467-471(2013).

    [141] H Ahmad, M Z Zulkifli, M H Jemangin. Distributed feedback multimode Brillouin–Raman random fiber laser in the S-band. Laser Physics Letters, 10, 055102(2013).

    [142] Y Zhang, J Ye, J Xu. Dual-wavelength random distributed feedback fiber laser with wavelength, linewidth, and power ratio tunability. Optics Express, 28, 10515-10523(2020).

    [143] N M Yusoff, K Y Lau, N H Z Abidin. Dual-wavelength random fiber laser incorporating micro-air cavity. Journal of Optics, 22, 035603(2020).

    [144] E I Dontsova, S I Kablukov, I D Vatnik. Frequency doubling of Raman fiber lasers with random distributed feedback. Optics Letters, 41, 1439-1442(2016).

    [145] S K Turitsyn, S A Babin, A E El-Taher. Random distributed feedback fibre laser. Nature Photonics, 4, 231-235(2010).

    [146] Z Wang, H Wu, M Fan. Random fiber laser: simpler and brighter. Opt Photon News, 25, 30(2014).

    [147] H Zhang, L Huang, P Zhou. More than 400 W random fiber laser with excellent beam quality. Optics Letters, 42, 3347-3350(2017).

    [148] J Xu, Z Lou, J Ye. Incoherently pumped high-power linearly-polarized single-mode random fiber laser: experimental investigations and theoretical prospects. Optics Express, 25, 5609-5617(2017).

    [149] X Du, H Zhang, H Xiao. High‐power random distributed feedback fiber laser: From science to application. Annalen der Physik, 528, 649-662(2016).

    [150] H Zhang, P Zhou, X Wang. Hundred-watt-level high power random distributed feedback Raman fiber laser at 1150 nm and its application in mid-infrared laser generation. Optics Express, 23, 17138-17144(2015).

    [151] X Du, H Zhang, P Ma. Kilowatt-level fiber amplifier with spectral-broadening-free property, seeded by a random fiber laser. Optics letters, 40, 5311-5314(2015).

    [152] J Xu, L Huang, M Jiang. Near-diffraction-limited linearly polarized narrow-linewidth random fiber laser with record kilowatt output. Photonics Research, 5, 350-354(2017).

    [153] J Zhang, G Bai, X Li. 1.36-kW spectral-narrowing fiber laser seeded by random fiber laser. IEEE Photonics Technology Letters, 31, 1343-1346(2019).

    [154] H Zhang, P Zhou, H Xiao. Efficient Raman fiber laser based on random Rayleigh distributed feedback with record high power. Laser Physics Letters, 11, 075104(2014).

    [155] E A Zlobina, S I Kablukov, S A Babin. Linearly polarized random fiber laser with ultimate efficiency. Optics Letters, 40, 4074-4077(2015).

    [156] S A Babin, E I Dontsova, S I Kablukov. Random fiber laser directly pumped by a high-power laser diode. Optics Letters, 38, 3301-3303(2013).

    [157] I D Vatnik, D V Churkin, E V Podivilov. High-efficiency generation in a short random fiber laser. Laser Physics Letters, 11, 075101(2014).

    [158] X Du, H Zhang, X Wang. Short cavity-length random fiber laser with record power and ultrahigh efficiency. Optics Letters, 41, 571-574(2016).

    [159] S A Babin, E A Zlobina, S I Kablukov. High-order random Raman lasing in a PM fiber with ultimate efficiency and narrow bandwidth. Scientific Reports, 6, 22625(2016).

    [160] Z Lou, X Jin, H Zhang. High power, high-order random Raman fiber laser based on tapered fiber. IEEE Photonics Journal, 9, 1-6(2017).

    [161] E A Evmenova, A G Kuznetsov, I N Nemov. 2nd-order random lasing in a multimode diode-pumped graded-index fiber. Scientific Reports, 8, 1-7(2018).

    [162] H Zhang, X Du, P Zhou. Tapered fiber based high power random laser. Optics Express, 24, 9112-9118(2016).

    [163] H Zhang, J Ye, P Zhou. Tapered-fiber-enabled high-power, high-spectral-purity random fiber lasing. Optics Letters, 43, 4152-4155(2018).

    [164] Y Tang, J Xu. A random Q-switched fiber laser. Scientific Reports, 5, 1-5(2015).

    [165] J Ye, J Xu, J Song. Pump scheme optimization of an incoherently pumped high-power random fiber laser. Photonics Research, 7, 977-983(2019).

    [166] H Wu, Z Wang, W Sun. 1.5 μm low threshold, high efficiency random fiber laser with hybrid erbium–raman gain. Journal of Lightwave Technology, 36, 844-849(2017).

    [167] L Ye, B Liu, C Zhao. The electrically and magnetically controllable random laser from dye-doped liquid crystals. Journal of Applied Physics, 116, 053103(2014).

    [168] Z Wang, M Cao, G Shao. Coherent random lasing in colloidal quantum dot-doped polymer-dispersed liquid crystal with low threshold and high stability. The Journal of Physical Chemistry Letters, 11, 767-774(2020).

    [169] M Pang, X Bao, L Chen. Observation of narrow linewidth spikes in the coherent Brillouin random fiber laser. Optics Letters, 38, 1866-1868(2013).

    [170] S Sugavanam, N Tarasov, X Shu. Narrow-band generation in random distributed feedback fiber laser. Optics Express, 21, 16466-16472(2013).

    [171] D Leandro, S Rota-Rodrigo, D Ardanaz. Narrow-linewidth multi-wavelength random distributed feedback laser. Journal of Lightwave Technology, 33, 3591-3596(2015).

    [172] Y Xu, S Gao, P Lu. Low-noise Brillouin random fiber laser with a random grating-based resonator. Optics Letters, 41, 3197-3200(2016).

    [173] S M Popov, O V Butov, A P Bazakutsa. Random lasing in a short Er-doped artificial Rayleigh fiber. Results in Physics, 16, 102868(2020).

    [174] Wiersma D S, Cavalieri S. Temperaturecontrolled rom laser action in liquid crystal infiltrated systems[J]. Physical Review E, 2002, 66(5): 056612.

    [175] Wang C, Liu J, Liu H. acteristic of polarization of rom laser[C]Proceedings of SPIE, International Society f Optics Photonics, 2005, 5644: 714722.

    [176] J S Liu, Z Xiong, W Chun. Theoretical investigation on polarization-dependent laser action in two-dimensional random media. Journal of Optics A: Pure and Applied Optics, 9, 658(2007).

    [177] S Knitter, M Kues, C Fallnich. Spectro-polarimetric signature of a random laser. Physical Review A, 88, 013839(2013).

    [178] S Knitter, M Kues, M Haidl. Linearly polarized emission from random lasers with anisotropically amplifying media. Optics Express, 21, 31591-31603(2013).

    [179] P Niay, P Bernage, T Taunay. Polarization selectivity of gratings written in Hi-Bi fibers by the external method. IEEE photonics technology letters, 7, 391-393(1995).

    [180] W H Loh, B N Samson, L Dong. High performance single frequency fiber grating-based erbium: ytterbium-codoped fiber lasers. Journal of Lightwave Technology, 16, 114(1998).

    [181] X Du, H Zhang, X Wang. Investigation on random distributed feedback Raman fiber laser with linear polarized output. Photonics Research, 3, 28-31(2015).

    [182] E S P Leong, S F Yu, A P Abiyasa. Polarization characteristics of ZnO rib waveguide random lasers. Applied Physics Letters, 88, 091116(2006).

    [183] S Knitter, M Kues, C Fallnich. Emission polarization of random lasers in organic dye solutions. Optics Letters, 37, 3621-3623(2012).

    [184] F Yao, W Zhou, H Bian. Polarization and polarization control of random lasers from dye-doped nematic liquid crystals. Optics Letters, 38, 1557-1559(2013).

    [185] B C Yao, Y J Rao, Z N Wang. Graphene based widely-tunable and singly-polarized pulse generation with random fiber lasers. Scientific Reports, 5, 18526(2015).

    [186] V Lisinetskii, A Ryabchun, A Bobrovsky. Photochromic composite for random lasing based on porous polypropylene infiltrated with azobenzene-containing liquid crystalline mixture. ACS Applied Materials & Interfaces, 7, 26595-26602(2015).

    [187] L Ye, C Zhao, Y Feng. Study on the polarization of random lasers from dye-doped nematic liquid crystals. Nanoscale Research Letters, 12, 1-8(2017).

    [188] C W Chen, H P Huang, H C Jau. Polarization-asymmetric bidirectional random laser emission from a twisted nematic liquid crystal. Journal of Applied Physics, 121, 033102(2017).

    [189] J Andreasen, A A Asatryan, L C Botten. Modes of random lasers. Advances in Optics and Photonics, 3, 88-127(2011).

    [190] H K Liang, S F Yu, H Y Yang. ZnO random laser diode arrays for stable single-mode operation at high power. Applied Physics Letters, 97, 241107(2010).

    [191] N Bachelard, J Andreasen, S Gigan. Taming random lasers through active spatial control of the pump. Physical Review Letters, 109, 033903(2012).

    [192] T Hisch, M Liertzer, D Pogany. Pump-controlled directional light emission from random lasers. Physical Review Letters, 111, 023902(2013).

    [193] L Leuzzi, C Conti, V Folli. Phase diagram and complexity of mode-locked lasers: from order to disorder. Physical Review Letters, 102, 083901(2009).

    [194] M Leonetti, C Conti, C Lopez. The mode-locking transition of random lasers. Nature Photonics, 5, 615-617(2011).

    [195] R Ma, W L Zhang, X P Zeng. Quasi mode-locking of coherent feedback random fiber laser. Scientific Reports, 6, 39703(2016).

    [196] W L Zhang, Y B Song, X P Zeng. Temperature-controlled mode selection of Er-doped random fiber laser with disordered Bragg gratings. Photonics Research, 4, 102-105(2016).

    [197] L. CXII Rayleigh. The problem of the whispering gallery. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 20, 1001-1004(1910).

    [198] H Zhu, S F Yu, Q J Wang. Directional single-mode emission from coupled whispering gallery resonators realized by using ZnS microbelts. Optics Letters, 38, 1527-1529(2013).

    [199] Z Xu, J Tong, X Shi. Tailoring whispering gallery lasing and random lasing in a compound cavity. Polymers, 12, 656(2020).

    [200] E Ignesti, F Tommasi, L Fini. A new class of optical sensors: a random laser based device. Scientific Reports, 6, 1-6(2016).

    [201] X Shi, K Ge, J H Tong. Low-cost biosensors based on a plasmonic random laser on fiber facet. Optics Express, 28, 12233-12242(2020).

    [202] M Gaio, S Caixeiro, B Marelli. Gain-based mechanism for pH sensing based on random lasing. Physical Review Applied, 7, 034005(2017).

    [203] S Miao, W Zhang, W Huang. High-resolution static strain sensor based on random fiber laser and beat frequency interrogation. IEEE Photonics Technology Letters, 31, 1530-1533(2019).

    [204] S Miao, W Zhang, Y Song. High-resolution random fiber laser acoustic emission sensor. Optics Express, 28, 12699-12708(2020).

    [205] J He, S Hu, J Ren. Biofluidic random laser cytometer for biophysical phenotyping of cell suspensions. ACS Sensors, 4, 832-840(2019).

    [206] B Redding, M A Choma, H Cao. Speckle-free laser imaging using random laser illumination. Nature Photonics, 6, 355-359(2012).

    [207] A Mermillod-Blondin, H Mentzel, A Rosenfeld. Time-resolved microscopy with random lasers. Optics Letters, 38, 4112-4115(2013).

    [208] Y Liu, W Yang, S Xiao. Surface-emitting perovskite random lasers for speckle-free imaging. ACS Nano, 13, 10653-10661(2019).

    [209] J Guo, Y Rao, W Zhang. Dental imaging with near-infrared transillumination using random fiber laser. Photonic Sensors, 10, 333-339(2020).

    [210] R Ma, Z Wang, H H Zhang. Imaging through opacity using a near-infrared low-spatial-coherence fiber light source. Optics Letters, 45, 3816-3819(2020).

    [211] H Wu, B Han, Z Wang. Temporal ghost imaging with random fiber lasers. Optics Express, 28, 9957-9964(2020).

    [212] M Fernandez-Vallejo, M Bravo, M Lopez-Amo. Ultra-long laser systems for remote fiber Bragg gratings arrays interrogation. IEEE Photonics Technology Letters, 25, 1362-1364(2013).

    [213] Z Wang, W Sun, H Wu. Long-distance random fiber laser point sensing system incorporating active fiber. Optics Express, 24, 22448-22453(2016).

    [214] M Tan, P Rosa, S T Le. Transmission performance improvement using random DFB laser based Raman amplification and bidirectional second-order pumping. Optics Express, 24, 2215-2221(2016).

    [215] D Leandro, V deMiguel-Soto, M López-Amo. High-resolution sensor system using a random distributed feedback fiber laser. Journal of Lightwave Technology, 34, 4596-4602(2016).

    [216] Z N Wang, J J Zeng, J Li. Ultra-long phase-sensitive OTDR with hybrid distributed amplification. Optics Letters, 39, 5866-5869(2014).

    [217] P Rosa, G Rizzelli, M Tan. Characterisation of random DFB Raman laser amplifier for WDM transmission. Optics Express, 23, 28634-28639(2015).

    [218] Z N Wang, Y J Rao, H Wu. Long-distance fiber-optic point-sensing systems based on random fiber lasers. Optics Express, 20, 17695-17700(2012).

    [219] D Leandro, V M Soto, R A Perez-Herrera. Random DFB fiber laser for remote (200 km) sensor monitoring using hybrid WDM/TDM. Journal of Lightwave Technology, 34, 4430-4436(2016).

    [220] Y Fu, R Zhu, B Han. 175-km repeaterless BOTDA with hybrid high-order random fiber laser amplification. Journal of Lightwave Technology, 37, 4680-4686(2019).

    [221] A Boschetti, A Taschin, P Bartolini. Spectral super-resolution spectroscopy using a random laser. Nature Photonics, 14, 177-182(2020).

    [222] S Gao, L Zhang, Y Xu. High-speed random bit generation via brillouin random fiber laser with non-uniform fibers. IEEE Photonics Technology Letters, 29, 1352-1355(2017).

    Wenyu Du, Zhijia Hu, Zhigang Cao, Guosheng Zhang, Yan Wang, Weidong Luo, Benli Yu. Review of random laser research (Invited)[J]. Infrared and Laser Engineering, 2020, 49(12): 20201052
    Download Citation