• Laser & Optoelectronics Progress
  • Vol. 58, Issue 8, 0800001 (2021)
Wenbo Guo, Qican Zhang*, and Zhoujie Wu
Author Affiliations
  • Department of Opto-Electronics, College of Electronics and Information Engineering, Sichuan University, Chengdu, Sichuan 610065, China
  • show less
    DOI: 10.3788/LOP202158.0800001 Cite this Article Set citation alerts
    Wenbo Guo, Qican Zhang, Zhoujie Wu. Real-Time Three-Dimensional Imaging Technique Based on Phase-Shift Fringe Analysis: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0800001 Copy Citation Text show less
    References

    [1] Chen F, Brown G M, Song M M. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering, 39, 10-22(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=OPEGAR000039000001000010000001&idtype=cvips&gifs=Yes

    [2] Blais F O. Review of 20 years of range sensor development[J]. Journal of Electronic Imaging, 13, 231-243(2004). http://www.researchgate.net/publication/220050372_Review_of_20_years_of_range_sensor_development

    [3] Salvi J, Fernandez S, Pribanic T et al. A state of the art in structured light patterns for surface profilometry[J]. Pattern Recognition, 43, 2666-2680(2010).

    [4] Geng J. Structured-light 3D surface imaging: a tutorial[J]. Advances in Optics and Photonics, 3, 128-160(2011).

    [5] Zhang Z H. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering, 50, 1097-1106(2012). http://www.sciencedirect.com/science/article/pii/S0143816612000085

    [6] Su X Y, Zhang Q C. Dynamic 3-D shape measurement method: a review[J]. Optics and Lasers in Engineering, 48, 191-204(2010).

    [7] Zhang S. Recent progresses on real-time 3D shape measurement using digital fringe projection techniques[J]. Optics and Lasers in Engineering, 48, 149-158(2010). http://www.sciencedirect.com/science/article/pii/S0143816609000529

    [8] Zuo C, Feng S J, Huang L et al. Phase shifting algorithms for fringe projection profilometry: a review[J]. Optics and Lasers in Engineering, 109, 23-59(2018). http://www.sciencedirect.com/science/article/pii/S0143816618302203

    [9] Qian K M. Two-dimensional windowed Fourier transform for fringe pattern analysis: principles, applications and implementations[J]. Optics and Lasers in Engineering, 45, 304-317(2007). http://www.sciencedirect.com/science/article/pii/S0143816606000455

    [10] Zhong J G, Weng J W. Spatial carrier-fringe pattern analysis by means of wavelet transform: wavelet transform profilometry[J]. Applied Optics, 43, 4993-4998(2004).

    [11] Takeda M, Ina H, Kobayashi S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry[J]. Journal of the Optical Society of America, 72, 156-160(1982).

    [12] Su X Y, Chen W J. Fourier transform profilometry: a review[J]. Optics and Lasers in Engineering, 35, 263-284(2001). http://www.sciencedirect.com/science/article/pii/S0143816601000239

    [13] Su X Y, Chen W J. Reliability-guided phase unwrapping algorithm: a review[J]. Optics and Lasers in Engineering, 42, 245-261(2004). http://www.sciencedirect.com/science/article/pii/S0143816603001404

    [14] Gutmann B, Weber H. Phase unwrapping with the branch-cut method:role of phase-field direction[J]. Applied Optics, 39, 4802-4816(2000).

    [15] Zappa E, Busca G. Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry[J]. Optics and Lasers in Engineering, 46, 106-116(2008).

    [16] Ghiglia D C, Romero L A. Minimum L p-norm two-dimensional phase unwrapping[J]. Journal of the Optical Society of America A, 13, 1999-2013(1996).

    [17] Trouve E, Nicolas J M, Maitre H. Improving phase unwrapping techniques by the use of local frequency estimates[J]. IEEE Transactions on Geoscience and Remote Sensing, 36, 1963-1972(1998).

    [18] Zebker H A, Lu Y P. Phase unwrapping algorithms for radar interferometry: residue-cut, least-squares, and synthesis algorithms[J]. Journal of the Optical Society of America A, 15, 586-598(1998). http://www.opticsinfobase.org/josaa/abstract.cfm?id=1421

    [19] Huntley J M, Saldner H. Temporal phase-unwrapping algorithm for automated interferogram analysis[J]. Applied Optics, 32, 3047-3052(1993). http://www.opticsinfobase.org/ao/fulltext.cfm?uri=ao-32-17-3047&id=40260

    [20] Ding Y, Xi J T, Yu Y G et al. Recovering the absolute phase maps of two fringe patterns with selected frequencies[J]. Optics Letters, 36, 2518-2520(2011). http://www.ncbi.nlm.nih.gov/pubmed/21725465

    [21] Wang Y J, Zhang S. Novel phase-coding method for absolute phase retrieval[J]. Optics Letters, 37, 2067-2069(2012). http://europepmc.org/abstract/med/22660123

    [22] Nguyen H, Nguyen D, Wang Z et al. Real-time, high-accuracy 3D imaging and shape measurement[J]. Applied Optics, 54, A9-A17(2015). http://www.ncbi.nlm.nih.gov/pubmed/25967028

    [23] Lei Z K, Wang C L, Zhou C L. Multi-frequency inverse-phase fringe projection profilometry for nonlinear phase error compensation[J]. Optics and Lasers in Engineering, 66, 249-257(2015). http://www.sciencedirect.com/science/article/pii/S0143816614002516

    [24] Jiang C, Jia S H, Dong J et al. Multi-frequency color-marked fringe projection profilometry for fast 3D shape measurement of complex objects[J]. Optics Express, 23, 24152-24162(2015). http://www.ncbi.nlm.nih.gov/pubmed/26406621

    [25] Cheng Y Y, Wyant J C. Multiple-wavelength phase-shifting interferometry[J]. Applied Optics, 24, 804(1985).

    [26] Creath K, Cheng Y Y, Wyant J C. Contouring aspheric surfaces using two-wavelength phase-shifting interferometry[J]. Optica Acta: International Journal of Optics, 32, 1455-1464(1985).

    [27] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Applied Optics, 38, 6565-6573(1999).

    [28] Zhang S, Huang P S. Novel method for structured light system calibration[J]. Optical Engineering, 45, 083601(2006). http://www.sciencedirect.com/science/article/pii/S014381662100107X

    [29] Zhang Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22, 1330-1334(2000).

    [30] Li W S, Su X Y, Liu Z B. Large-scale three-dimensional object measurement: a practical coordinate mapping and image data-patching method[J]. Applied Optics, 40, 3326-3333(2001). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-40-20-3326

    [31] Su X Y, Zhou W S, von Bally G et al. Automated phase-measuring profilometry using defocused projection of a Ronchi grating[J]. Optics Communications, 94, 561-573(1992).

    [32] Xian T, Su X Y. Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry[J]. Applied Optics, 40, 1201-1206(2001). http://www.ncbi.nlm.nih.gov/pubmed/18357106

    [33] Guan Y J, Yin Y K, Li A et al. Dynamic 3D imaging based on acousto-optic heterodyne fringe interferometry[J]. Optics Letters, 39, 3678-3681(2014). http://europepmc.org/abstract/med/24978566

    [34] Fujigaki M, Sakaguchi T, Murata Y. Development of a compact 3D shape measurement unit using the light-source-stepping method[J]. Optics and Lasers in Engineering, 85, 9-17(2016). http://www.sciencedirect.com/science/article/pii/S0143816616300501

    [35] Heist S, Mann A, Kühmstedt P et al. Array projection of aperiodic sinusoidal fringes for high-speed three-dimensional shape measurement[J]. Optical Engineering, 53, 112208(2014).

    [36] Grosse M. Fast data acquisition for three-dimensional shape measurement using fixed-pattern projection and temporal coding[J]. Optical Engineering, 50, 100503(2011).

    [37] Schaffer M, Grosse M, Harendt B et al. Statistical patterns: an approach for high-speed and high-accuracy shape measurements[J]. Optical Engineering, 53, 112205(2014). http://spie.org/Publications/Journal/10.1117/1.OE.53.11.112205

    [38] Wissmann P, Forster F, Schmitt R. Fast and low-cost structured light pattern sequence projection[J]. Optics Express, 19, 24657-24671(2011).

    [39] Heist S, Lutzke P, Schmidt I et al. High-speed three-dimensional shape measurement using GOBO projection[J]. Optics and Lasers in Engineering, 87, 90-96(2016). http://www.sciencedirect.com/science/article/pii/S0143816616000555

    [40] Heist S, Zhang C, Reichwald K et al. 5D hyperspectral imaging: fast and accurate measurement of surface shape and spectral characteristics using structured light[J]. Optics Express, 26, 23366-23379(2018).

    [41] Landmann M, Heist S, Dietrich P et al. High-speed 3D thermography[J]. Optics and Lasers in Engineering, 121, 448-455(2019).

    [42] Zhang H H, Zhang Q C, Li Y et al. High speed 3D shape measurement with temporal Fourier transform profilometry[J]. Applied Sciences, 9, 4123(2019). http://www.researchgate.net/publication/336229010_High_Speed_3D_Shape_Measurement_with_Temporal_Fourier_Transform_Profilometry

    [43] Liu Y H, Zhang Q C, Zhang H H et al. Improve temporal Fourier transform profilometry for complex dynamic three-dimensional shape measurement[J]. Sensors, 20, 1808(2020). http://www.researchgate.net/publication/340181397_Improve_Temporal_Fourier_Transform_Profilometry_for_Complex_Dynamic_Three-Dimensional_Shape_Measurement

    [44] Hyun J S, Chiu G T C, Zhang S. High-speed and high-accuracy 3D surface measurement using a mechanical projector[J]. Optics Express, 26, 1474-1487(2018).

    [45] Xue J P, Zhang Q C, Li C H et al. 3D face profilometry based on galvanometer scanner with infrared fringe projection in high speed[J]. Applied Sciences, 9, 1458(2019). http://www.researchgate.net/publication/332279156_3D_Face_Profilometry_Based_on_Galvanometer_Scanner_with_Infrared_Fringe_Projection_in_High_Speed

    [46] Zhang S. High-speed 3D shape measurement with structured light methods:a review[J]. Optics and Lasers in Engineering, 106, 119-131(2018). http://www.sciencedirect.com/science/article/pii/S0143816617313246

    [47] Lei S Y, Zhang S. Flexible 3-D shape measurement using projector defocusing[J]. Optics Letters, 34, 3080-3082(2009). http://www.ncbi.nlm.nih.gov/pubmed/19838232

    [48] Zhang S. Flexible 3D shape measurement using projector defocusing: extended measurement range[J]. Optics Letters, 35, 934-936(2010). http://www.ncbi.nlm.nih.gov/pubmed/20364174

    [49] Ayubi G A, Ayubi J A, Di Martino J M et al. Pulse-width modulation in defocused three-dimensional fringe projection[J]. Optics Letters, 35, 3682-3684(2010).

    [50] Wang Y J, Zhang S. Optimal pulse width modulation for sinusoidal fringe generation with projector defocusing[J]. Optics Letters, 35, 4121-4123(2010).

    [51] Zuo C, Chen Q, Feng S et al. Optimized pulse width modulation pattern strategy for three-dimensional profilometry with projector defocusing[J]. Applied Optics, 51, 4477-4490(2012). http://europepmc.org/abstract/MED/22772122

    [52] Lohry W, Zhang S. 3D shape measurement with 2D area modulated binary patterns[J]. Optics and Lasers in Engineering, 50, 917-921(2012). http://www.sciencedirect.com/science/article/pii/S0143816612000747

    [53] Wang Y J, Zhang S. Three-dimensional shape measurement with binary dithered patterns[J]. Applied Optics, 51, 6631-6636(2012). http://europepmc.org/abstract/med/23033035

    [54] Dai J F, Zhang S. Phase-optimized dithering technique for high-quality 3D shape measurement[J]. Optics and Lasers in Engineering, 51, 790-795(2013). http://www.sciencedirect.com/science/article/pii/S0143816613000596

    [55] Sun J S, Zuo C, Feng S J et al. Improved intensity-optimized dithering technique for 3D shape measurement[J]. Optics and Lasers in Engineering, 66, 158-164(2015). http://www.sciencedirect.com/science/article/pii/S0143816614002279

    [56] Li B W, Wang Y J, Dai J F et al. Some recent advances on superfast 3D shape measurement with digital binary defocusing techniques[J]. Optics and Lasers in Engineering, 54, 236-246(2014). http://www.sciencedirect.com/science/article/pii/S014381661300225X

    [57] Zhang S, van der Weide D, Oliver J. Superfast phase-shifting method for 3-D shape measurement[J]. Optics Express, 18, 9684-9689(2010).

    [58] Zuo C, Tao T Y, Feng S J et al. Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10, 000 frames per second[J]. Optics and Lasers in Engineering, 102, 70-91(2018).

    [59] Boyer K L, Kak A C. Color-encoded structured light for rapid active ranging[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 9, 14-28(1987). http://ieeexplore.ieee.org/document/4767869

    [60] Pagès J, Salvi J, Collewet C et al. Optimised De Bruijn patterns for one-shot shape acquisition[J]. Image and Vision Computing, 23, 707-720(2005).

    [61] Mac Williams F J, Sloane N J A. Pseudo-random sequences and arrays[J]. Proceedings of the IEEE, 64, 1715-1729(1976). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1454680

    [62] Sansoni G, Corini S, Lazzari S et al. Three-dimensional imaging based on Gray-code light projection: characterization of the measuring algorithm and development of a measuring system for industrial applications[J]. Applied Optics, 36, 4463-4472(1997). http://www.opticsinfobase.org/ao/abstract.cfm?uri=ao-36-19-4463

    [63] Inokuchi S, Sato K, Matsuda F. Range imaging system for 3-D object recognition[EB/OL]. [2021-03-23]. https://www.researchgate.net/publication/243766657_Range_imaging_system_for_3-d_object_recognition

    [64] Pan B, Qian K M, Xie H M et al. Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review[J]. Measurement Science and Technology, 20, 062001(2009). http://adsabs.harvard.edu/abs/2009MeScT..20f2001P

    [65] Lohry W, Zhang S. High-speed absolute three-dimensional shape measurement using three binary dithered patterns[J]. Optics Express, 22, 26752-26762(2014). http://www.ncbi.nlm.nih.gov/pubmed/25401823

    [66] Zuo C, Huang L, Zhang M L et al. Temporal phase unwrapping algorithms for fringe projection profilometry: a comparative review[J]. Optics and Lasers in Engineering, 85, 84-103(2016). http://www.sciencedirect.com/science/article/pii/S0143816621000920

    [67] Wissmann P, Schmitt R, Forster F. Fast and accurate 3D scanning using coded phase shifting and high speed pattern projection[C]. //2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, May 16-19, 2011, Hangzhou, China., 108-115(2011).

    [68] Wang Y C, Liu K, Hao Q et al. Period coded phase shifting strategy for real-time 3-D structured light illumination[J]. IEEE Transactions on Image Processing, 20, 3001-3013(2011). http://www.ncbi.nlm.nih.gov/pubmed/21606036

    [69] Zhang Y Y, Xiong Z W, Wu F. Unambiguous 3D measurement from speckle-embedded fringe[J]. Applied Optics, 52, 7797-7805(2013). http://www.ncbi.nlm.nih.gov/pubmed/24216740

    [70] Tao T Y, Chen Q, Da J et al. Real-time 3-D shape measurement with composite phase-shifting fringes and multi-view system[J]. Optics Express, 24, 20253-20269(2016). http://www.ncbi.nlm.nih.gov/pubmed/27607632

    [71] Wu G, Wu Y, Li L et al. High-resolution few-pattern method for 3D optical measurement[J]. Optics Letters, 44, 3602-3605(2019). http://www.ncbi.nlm.nih.gov/pubmed/31305582

    [72] Zhang Q C, Wu Z J. Three-dimensional imaging technique based on Gray-coded structured illumination[J]. Infrared and Laser Engineering, 49, 0303004(2020).

    [73] Zhang Q C, Su X Y, Xiang L Q et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 50, 574-579(2012).

    [74] Wu Z J, Zuo C, Guo W B et al. High-speed three-dimensional shape measurement based on cyclic complementary Gray-code light[J]. Optics Express, 27, 1283-1297(2019). http://www.researchgate.net/publication/330407041_high-speed_three-dimensional_shape_measurement_based_on_cyclic_complementary_gray-code_light

    [75] Wu Z J, Guo W B, Zhang Q C. High-speed three-dimensional shape measurement based on shifting Gray-code light[J]. Optics Express, 27, 22631-22644(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510550

    [76] Wu Z J, Guo W B, Li Y Y et al. High-speed and high-efficiency three-dimensional shape measurement based on Gray-coded light[J]. Photonics Research, 8, 819-829(2020). http://arxiv.org/abs/2001.06790v1

    [77] Zheng D, Kemao Q, Da F et al. Ternary Gray code-based phase unwrapping for 3D measurement using binary patterns with projector defocusing[J]. Applied Optics, 56, 3660-3665(2017).

    [78] He X Y, Zheng D L, Qian K M et al. Quaternary gray-code phase unwrapping for binary fringe projection profilometry[J]. Optics and Lasers in Engineering, 121, 358-368(2019). http://www.sciencedirect.com/science/article/pii/S014381661930257X

    [79] Liu K, Wang Y C, Lau D L et al. Dual-frequency pattern scheme for high-speed 3-D shape measurement[J]. Optics Express, 18, 5229-5244(2010). http://www.ncbi.nlm.nih.gov/pubmed/20389536

    [80] Zuo C, Chen Q, Gu G H et al. High-speed three-dimensional shape measurement for dynamic scenes using bi-frequency tripolar pulse-width-modulation fringe projection[J]. Optics and Lasers in Engineering, 51, 953-960(2013). http://www.sciencedirect.com/science/article/pii/S0143816613000754

    [81] Zuo C, Chen Q, Gu G H et al. High-speed three-dimensional profilometry for multiple objects with complex shapes[J]. Optics Express, 20, 19493-19510(2012).

    [82] Weise T, Leibe B, van Gool L. Fast 3D scanning with automatic motion compensation[C]. //2007 IEEE Conference on Computer Vision and Pattern Recognition, June 17-22, 2007, Minneapolis, MN, USA.(2007).

    [83] Li Z W, Zhong K, Li Y F et al. Multiview phase shifting:a full-resolution and high-speed 3D measurement framework for arbitrary shape dynamic objects[J]. Optics Letters, 38, 1389-1391(2013).

    [84] An Y T, Hyun J S, Zhang S. Pixel-wise absolute phase unwrapping using geometric constraints of structured light system[J]. Optics Express, 24, 18445-18459(2016).

    [85] Tao T Y, Chen Q, Feng S J et al. High-speed real-time 3D shape measurement based on adaptive depth constraint[J]. Optics Express, 26, 22440-22456(2018). http://www.ncbi.nlm.nih.gov/pubmed/30130938

    [86] Lu L, Suresh V, Zheng Y et al. Motion induced error reduction methods for phase shifting profilometry: a review[J]. Optics and Lasers in Engineering, 141, 106573(2021). http://www.sciencedirect.com/science/article/pii/S0143816621000439

    [87] Zhang S, Yau S T. High-speed three-dimensional shape measurement system using a modified two-plus-one phase-shifting algorithm[J]. Optical Engineering, 46, 113603(2007). http://spie.org/Publications/Journal/10.1117/1.2802546

    [88] Lu L, Xi J T, Yu Y G et al. New approach to improve the accuracy of 3-D shape measurement of moving object using phase shifting profilometry[J]. Optics Express, 21, 30610-30622(2013).

    [89] Lu L, Xi J T, Yu Y G et al. New approach to improve the performance of fringe pattern profilometry using multiple triangular patterns for the measurement of objects in motion[J]. Optical Engineering, 53, 112211(2014).

    [90] Lu L, Ding Y, Luan Y S et al. Automated approach for the surface profile measurement of moving objects based on PSP[J]. Optics Express, 25, 32120-32131(2017). http://europepmc.org/abstract/MED/29245876

    [91] Feng S J, Zuo C, Tao T Y et al. Robust dynamic 3-D measurements with motion-compensated phase-shifting profilometry[J]. Optics and Lasers in Engineering, 103, 127-138(2018). http://www.sciencedirect.com/science/article/pii/S014381661730787X

    [92] Wang Y, Liu Z, Jiang C et al. Motion induced phase error reduction using a Hilbert transform[J]. Optics Express, 26, 34224-34235(2018). http://www.researchgate.net/publication/329721669_Motion_induced_phase_error_reduction_using_a_Hilbert_transform

    [93] Liu X R, Tao T Y, Wan Y Y et al. Real-time motion-induced-error compensation in 3D surface-shape measurement[J]. Optics Express, 27, 25265-25279(2019). http://www.ncbi.nlm.nih.gov/pubmed/31510401

    [94] Wang Y J, Suresh V, Li B W. Motion-induced error reduction for binary defocusing profilometry via additional temporal sampling[J]. Optics Express, 27, 23948-23958(2019).

    [95] Liu Z P, Zibley P C, Zhang S. Motion-induced error compensation for phase shifting profilometry[J]. Optics Express, 26, 12632-12637(2018). http://europepmc.org/abstract/MED/29801301

    [96] Cong P Y, Xiong Z W, Zhang Y Y et al. Accurate dynamic 3D sensing with Fourier-assisted phase shifting[J]. IEEE Journal of Selected Topics in Signal Processing, 9, 396-408(2015). http://ieeexplore.ieee.org/document/6975095/citations

    [97] Li B W, Zhang S. Superfast high-resolution absolute 3D recovery of a stabilized flapping flight process[J]. Optics Express, 25, 27270-27282(2017). http://www.ncbi.nlm.nih.gov/pubmed/29092204

    [98] Li B W, Liu Z P, Zhang S. Motion-induced error reduction by combining Fourier transform profilometry with phase-shifting profilometry[J]. Optics Express, 24, 23289-23303(2016). http://www.ncbi.nlm.nih.gov/pubmed/27828393

    [99] Qian J M, Tao T Y, Feng S J et al. Motion-artifact-free dynamic 3D shape measurement with hybrid Fourier-transform phase-shifting profilometry[J]. Optics Express, 27, 2713-2731(2019). http://www.researchgate.net/publication/330695074_Motion-artifact-free_dynamic_3D_shape_measurement_with_hybrid_Fourier-transform_phase-shifting_profilometry

    [100] Guo W B, Wu Z J, Li Y Y et al. Real-time 3D shape measurement with dual-frequency composite grating and motion-induced error reduction[J]. Optics Express, 28, 26882-26897(2020). http://www.researchgate.net/publication/343755444_Real-time_3D_shape_measurement_with_dual-frequency_composite_grating_and_motion-induced_error_reduction/download

    [101] Gao W J, Qian K M. Parallel computing in experimental mechanics and optical measurement: a review[J]. Optics and Lasers in Engineering, 50, 608-617(2012). http://www.sciencedirect.com/science/article/pii/S0143816611001989

    [102] Wang T Y, Qian K M. Parallel computing in experimental mechanics and optical measurement: a review (II)[J]. Optics and Lasers in Engineering, 104, 181-191(2018).

    [103] Karpinsky N L, Hoke M, Chen V et al. High-resolution, real-time three-dimensional shape measurement on graphics processing unit[J]. Optical Engineering, 53, 024105(2014). http://proceedings.spiedigitallibrary.org/journals/Optical-Engineering/volume-53/issue-02/024105/High-resolution-real-time-three-dimensional-shape-measurement-on-graphics/10.1117/1.OE.53.2.024105.full

    [104] Zhang S, Royer D, Yau S T. GPU-assisted high-resolution, real-time 3-D shape measurement[J]. Optics Express, 14, 9120-9129(2006).

    [105] Zhan G M, Tang H W, Zhong K et al. High-speed FPGA-based phase measuring profilometry architecture[J]. Optics Express, 25, 10553-10564(2017). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-25-9-10553

    [106] Wang K Q, Li Y, Qian K M et al. One-step robust deep learning phase unwrapping[J]. Optics Express, 27, 15100-15115(2019). http://www.ncbi.nlm.nih.gov/pubmed/31163947

    [107] Spoorthi G E, Gorthi S, Gorthi R K S S. PhaseNet: a deep convolutional neural network for two-dimensional phase unwrapping[J]. IEEE Signal Processing Letters, 26, 54-58(2019). http://www.ingentaconnect.com/content/iee/10709908/2018/00000026/00000001/art00013

    [108] Feng S J, Chen Q, Gu G H et al. Fringe pattern analysis using deep learning[J]. Advanced Photonics, 1, 025001(2019). http://www.opticsjournal.net/Articles/Abstract?aid=OJ2483b37c27b2ee39

    [109] van der Jeught S, Dirckx J J J. Deep neural networks for single shot structured light profilometry[J]. Optics Express, 27, 17091-17101(2019). http://www.researchgate.net/publication/333586159_deep_neural_networks_for_single_shot_structured_light_profilometry

    [110] Feng S J, Zuo C, Yin W et al. Micro deep learning profilometry for high-speed 3D surface imaging[J]. Optics and Lasers in Engineering, 121, 416-427(2019). http://www.sciencedirect.com/science/article/pii/S0143816619302015

    [111] Wang P, Zhang Y J, Sun C K et al. Multi-camera three-dimensional measurement system using an image stitching method based on flexible calibration target positioning[J]. Acta Optica Sinica, 40, 0412003(2020).

    [112] Liu X L, Peng X, Chen H L et al. Strategy for automatic and complete three-dimensional optical digitization[J]. Optics Letters, 37, 3126-3128(2012).

    [113] Nießner M, Zollhöfer M, Izadi S et al. Real-time 3D reconstruction at scale using voxel hashing[J]. ACM Transactions on Graphics, 32, 1-11(2013). http://131.107.65.14/apps/pubs/default.aspx?id=117890

    [114] Qian J M, Feng S J, Tao T Y et al. High-resolution real-time 360° 3D model reconstruction of a handheld object with fringe projection profilometry[J]. Optics Letters, 44, 5751-5754(2019). http://www.ncbi.nlm.nih.gov/pubmed/31774770

    [115] Cai N, Chen Z B, Lin B et al. High-quality three-dimensional shape measurement based on binary particle swarm dithering optimization[J]. Chinese Journal of Lasers, 46, 1004003(2019).

    [116] Mariottini G L, Scheggi S, Morbidi F et al. Planar mirrors for image-based robot localization and 3-D reconstruction[J]. Mechatronics, 22, 398-409(2012). http://www.sciencedirect.com/science/article/pii/s0957415811001474

    [117] Waddington C, Kofman J. Modified sinusoidal fringe-pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology[J]. Optical Engineering, 53, 084109(2014). http://spie.org/Publications/Journal/10.1117/1.OE.53.8.084109

    [118] Zhang S, Yau S T. High dynamic range scanning technique[J]. Optical Engineering, 48, 033604(2009).

    [119] Ri S, Fujigaki M, Morimoto Y. Intensity range extension method for three-dimensional shape measurement in phase-measuring profilometry using a digital micromirror device camera[J]. Applied Optics, 47, 5400-5407(2008).

    [120] Feng S J, Zhang Y Z, Chen Q et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J]. Optics and Lasers in Engineering, 59, 56-71(2014). http://www.sciencedirect.com/science/article/pii/S0143816614000633

    [121] Feng S J, Zhang L, Zuo C et al. High dynamic range 3D measurements with fringe projection profilometry: a review[J]. Measurement Science and Technology, 29, 122001(2018).

    [122] Guo Z N, Liu X H, Zhang Z H. Simulation andverification of three-dimensional shape measurement method for composite surface[J]. Laser & Optoelectronics Progress, 57, 191202(2020).

    [123] Feng W, Tang S J, Zhao X D et al. Three-dimensional shape measurement method of high-reflective surfaces based on adaptive fringe-pattern[J]. Acta Optica Sinica, 40, 0512003(2020).

    [124] Wu Z J, Guo W B, Pan B et al. A DIC-assisted fringe projection profilometry for high-speed 3D shape, displacement and deformation measurement of textured surfaces[J]. Optics and Lasers in Engineering, 142, 106614(2021).

    Wenbo Guo, Qican Zhang, Zhoujie Wu. Real-Time Three-Dimensional Imaging Technique Based on Phase-Shift Fringe Analysis: A Review[J]. Laser & Optoelectronics Progress, 2021, 58(8): 0800001
    Download Citation