[1] G. Mourou, “Nobel Lecture: Extreme light physics and application,” Reviews of Modern Physics, vol. 91, no. 3, article 030501, 2019
[3] F. Albert, M. E. Couprie, A. Debus, M. C. Downer, J. Faure, A. Flacco, L. A. Gizzi, T. Grismayer, A. Huebl, C. Joshi, M. Labat, W. P. Leemans, A. R. Maier, S. P. D. Mangles, P. Mason, F. Mathieu, P. Muggli, M. Nishiuchi, J. Osterho, P. P. Rajeev, U. Schramm, J. Schreiber, A. G. R. Thomas, J.-L. Vay, M. Vranic, and K. Zeil, “2020 roadmap on plasma accelerators,” New Journal of Physics, vol. 23, no. 3, article 031101, 2021
[4] I. Orfanos, I. Makos, I. Liontos, E. Skantzakis, B. Forg, D. Charalambidis, and P. Tzallas, “Attosecond pulse metrology,” APL Photonics, vol. 4, no. 8, article 080901, 2019
[6] T. Nagy, P. Simon, and L. Veisz, “High-energy few-cycle pulses: Post-compression techniques,” Advances in Physics: X, vol. 6, no. 1, article 1845795, 2021
[7] J. Schulte, T. Sartorius, J. Weitenberg, A. Vernaleken, and P. Russbueldt, “Nonlinear pulse compression in a multi-pass cell,” Optics Letters, vol. 41, no. 19, pp. 4511–4514, 2016
[8] M. Hanna, F. Guichard, N. Daher, Q. Bournet, X. Delen, and P. Georges, “Nonlinear Optics in Multipass Cells,” Laser & Photonics Reviews, vol. 15, no. 12, article 2100220, 2021
[11] C. Rolland, and P. B. Corkum, “Compression of high-power optical pulses,” Journal of the Optical Society of America B, vol. 5, no. 3, p. 641, 1988
[15] M. Kaumanns, V. Pervak, D. Kormin, V. Leshchenko, A. Kessel, M. Ueffing, Y. Chen, and T. Nubbemeyer, “Multipass spectral broadening of 18 mJ pulses compressible from 13 ps to 41 fs,” Optics Letters, vol. 43, no. 23, pp. 5877–5880, 2018
[16] P. Balla, A. BinWahid, I. Sytcevich, C. Guo, A.-L. Viotti, L. Silletti, A. Cartella, S. Alisauskas, H. Tavakol, U. Grosse-Wortmann, A. Schonberg, M. Seidel, A. Trabattoni, B. Manschwetus, T. Lang, F. Calegari, A. Couairon, A. L'Huillier, C. L. Arnold, I. Hartl, and C. M. Heyl, “Postcompression of picosecond pulses into the few-cycle regime,” Optics Letters, vol. 45, no. 9, pp. 2572–2575, 2020
[17] M. Kaumanns, D. Kormin, T. Nubbemeyer, V. Pervak, and S. Karsch, “Spectral broadening of 112 mJ, 13 ps pulses at 5 kHz in a LG 10 multipass cell with compressibility to 37 fs,” Optics Letters, vol. 46, no. 5, pp. 929–932, 2021
[18] S. Gröbmeyer, K. Fritsch, B. Schneider, M. Poetzlberger, V. Pervak, J. Brons, and O. Pronin, “Self-compression at 1 um wavelength in all-bulk multi-pass geometry,” Applied Physics B, vol. 126, no. 10, p. 159, 2020
[19] J. Song, Z. Wang, R. Lv, X. Wang, H. Teng, J. Zhu, and Z. Wei, “Generation of 172 fs pulse from a Nd: YVO4 picosecond laser by using multi-pass-cell technique,” Applied Physics B, vol. 127, no. 4, p. 50, 2021
[20] J. Song, Z. Wang, X. Wang, R. Liu, H. Teng, J. Zhu, and Z. Wei, “Generation of 601 fs pulse from an 8 kHz Nd:YVO4 picosecond laser by multi-pass-cell spectral broadening,” Chinese Optics Letters, vol. 19, no. 9, article 093201, 2021
[21] K. Fritsch, M. Poetzlberger, V. Pervak, J. Brons, and O. Pronin, “All-solid-state multipass spectral broadening to sub-20 fs,” Optics Letters, vol. 43, no. 19, pp. 4643–4646, 2018
[22] E. Vicentini, Y. Wang, D. Gatti, A. Gambetta, P. Laporta, G. Galzerano, K. Curtis, K. McEwan, C. R. Howle, and N. Coluccelli, “Nonlinear pulse compression to 22 fs at 156 µJ by an all-solid-state multipass approach,” Optics Express, vol. 28, no. 4, pp. 4541–4549, 2020
[23] G. Barbiero, H. Wang, J. Brons, B.-H. Chen, V. Pervak, and H. Fattahi, “Broadband terahertz solid-state emitter driven by Yb:YAG thin-disk oscillator,” Journal of Physics B: Atomic, Molecular and Optical Physics, vol. 53, no. 12, article 125601, 2020
[24] C.-L. Tsai, F. Meyer, A. Omar, Y. Wang, A.-Y. Liang, C.-H. Lu, M. Homann, S.-D. Yang, and C. J. Saraceno, “Efficient nonlinear compression of a mode-locked thin-disk oscillator to 27 fs at 98 W average power,” Optics Letters, vol. 44, no. 17, pp. 4115–4118, 2019
[25] G. Barbiero, H. Wang, M. Gral, S. Grobmeyer, D. Kimbaras, M. Neuhaus, V. Pervak, T. Nubbemeyer, H. Fattahi, and M. F. Kling, “Efficient nonlinear compression of a thin-disk oscillator to 8.5 fs at 55 W average power,” Optics Letters, vol. 46, no. 21, pp. 5304–5307, 2021
[26] C. Li, L. Winkelmann, and I. Hartl, “Flexible Pulse-Shape Picosecond Front-End for XFEL Photocathode Lasers,” in Conference on Lasers and Electro-Optics, San Jose, California: OSA, 2019
[27] M. Seidel, F. Pressacco, O. Akcaalan, T. Binhammer, J. Darvill, N. Ekanayake, M. Frede, U. Grosse-Wortmann, M. Heber, C. M. Heyl, D. Kutnyakhov, C. Li, C. Mohr, J. Muller, O. Puncken, H. Redlin, N. Schirmel, S. Schulz, A. Swiderski, H. Tavakol, H. Tunnermann, C. Vidoli, L. Wenthaus, N. Wind, L. Winkelmann, B. Manschwetus, and I. Hartl, “Ultrafast MHz- rate burst-mode pump-probe laser for the FLASH FEL facility based on nonlinear compression of ps-level pulses from an Yb-amplifier chain,” Laser & Photonics Reviews, vol. 16, article 2100268, 2022
[28] L. Lavenu, M. Natile, F. Guichard, X. Delen, M. Hanna, Y. Zaouter, and P. Georges, “Highpower two-cycle ultrafast source based on hybrid nonlinear compression,” Optics Express, vol. 27, no. 3, pp. 1958–1967, 2019
[29] G. Arisholm, and H. Fonnum Simulation System For Optical Science (SISYFOS) tutorial, version 2, Norwegian Defence Research Establishment (FFI), 2021
[30] D. Milam, “Review and assessment of measured values of the nonlinear refractive-index coefficient of fused silica,” Applied Optics, vol. 37, no. 3, pp. 546–550, 1998
[31] A. Vernaleken, P. Rubuldt, T. Sartorius, J. Schulte, and J. Weitenberg, “Method and arrangement for the spectral broadening of laser pulses for non-linear pulse compression,”, US Patent 9,847,615, 2017.
[32] Y.-C. Cheng, C.-H. Lu, Y.-Y. Lin, and A. H. Kung, “Supercontinuum generation in a multiplate medium,” Optics Express, vol. 24, no. 7, pp. 7224–7231, 2016
[33] D. Herriott, H. Kogelnik, and R. Kompfner, “Off-Axis Paths in Spherical Mirror Interferometers,” Applied Optics, vol. 3, no. 4, pp. 523–526, 1964
[34] M. Hanna, L. Daniault, F. Guichard, N. Daher, X. Delen, R. Lopez-Martens, and P. Georges, “Nonlinear beam matching to gas-filled multipass cells,” OSA Continuum, vol. 4, no. 2, pp. 732–738, 2021
[35] G. Agrawal, “Self-Phase Modulation,” Nonlinear Fiber Optics, Elsevier, 2013
[36] P. Russbueldt, J. Weitenberg, J. Schulte, R. Meyer, C. Meinhardt, H. D. Homann, and R. Poprawe, “Scalable 30 fs laser source with 530 W average power,” Optics Letters, vol. 44, no. 21, pp. 5222–5225, 2019
[37] M. Hanna, N. Daher, F. Guichard, X. Delen, and P. Georges, “Hybrid pulse propagation model and quasi-phase-matched four-wave mixing in multipass cells,” Journal of the Optical Society of America B, vol. 37, no. 10, pp. 2982–2988, 2020
[38] A.-L. Viotti, S. Alisauskas, H. Tunnermann, E. Escoto, M. Seidel, K. Dudde, B. Manschwetus, I. Hartl, and C. M. Heyl, “Temporal pulse quality of a Yb:YAG burst-mode laser post-compressed in a multi-pass cell,” Optics Letters, vol. 46, no. 18, pp. 4686–4689, 2021
[39] G. Agrawal, “Polarization effects, cross-phase modulation,” Nonlinear Fiber Optics, Elsevier, 2013
[40] C.-L. Tsai, Y.-H. Tseng, A.-Y. Liang, M.-W. Lin, S.-D. Yang, and M.-C. Chen, “Nonlinear Compression of Intense Optical Pulses at 1.55 µm by Multiple Plate Continuum Generation,” Journal of Lightwave Technology, vol. 37, no. 19, pp. 5100–5107, 2019
[41] J. Weitenberg, A. Vernaleken, J. Schulte, A. Ozawa, T. Sartorius, V. Pervak, H.-D. Homann, T. Udem, P. Russbuldt, and T. W. Hansch, “Multi-pass-cell-based nonlinear pulse compression to 115 fs at 75 µJ pulse energy and 300 W average power,” Optics Express, vol. 25, no. 17, pp. 20502–20510, 2017
[42] M. Hanna, X. Delen, L. Lavenu, F. Guichard, Y. Zaouter, F. Druon, and P. Georges, “Nonlinear temporal compression in multipass cells: Theory,” Journal of the Optical Society of America B, vol. 34, no. 7, p. 1340, 2017
[43] M. Müller, J. Buldt, H. Stark, C. Grebing, and J. Limpert, “Multipass cell for high-power few-cycle compression,” Optics Letters, vol. 46, no. 11, p. 2678, 2021
[44] C. M. Heyl, M. Seidel, E. Escoto, A. Schonberg, G. Arisholm, T. Lang, and I. Hartl, “High-energy bow tie multi-pass cells for nonlinear spectral broadening applications,” Journal of Physics: Photonics, vol. 4, no. 1, 2022
[45] D. S. Hobbs, B. D. MacLeod, and E. S. III, “Continued advancement of laser damage resistant optically functional microstructures,” Laser-induced damage in optical materials: 2012, G. J. Exarhos, V. E. Gruzdev, J. A. Menapace, D. Ristau, and M. J. Soileau, Eds., SPIE, vol. 8530, 2012
[46] E. A. Khazanov, S. Y. Mironov, and G. A. Mourou, “Nonlinear compression of high-power laser pulses: Compression after compressor approach,” Physics-Uspekhi, vol. 62, no. 11, pp. 1096–1124, 2019
[47] R. W. Boyd, “Chapter 4 - The Intensity-Dependent Refractive Index,” Nonlinear Optics (Third Edition), R. W. Boyd, Ed., Academic Press, Burlington, pp. 207–252, 2008
[48] J. Brons, V. Pervak, E. Fedulova, D. Bauer, D. Sutter, V. Kalashnikov, A. Apolonskiy, O. Pronin, and F. Krausz, “Energy scaling of Kerr-lens mode-locked thin-disk oscillators,” Optics Letters, vol. 39, no. 22, p. 6442, 2014
[49] J. Fischer, J. Drs, N. Modsching, F. Labaye, V. J. Wittwer, and T. Südmeyer, “Efficient 100- MW, 100-W, 50-fs-class Yb:YAG thin-disk laser oscillator,” Optics Express, vol. 29, no. 25, article 42075, 2021
[50] N. Lilienfein, H. Carstens, S. Holzberger, C. Jocher, T. Eidam, J. Limpert, A. Tunnermann, A. Apolonski, F. Krausz, and I. Pupeza, “Balancing of thermal lenses in enhancement cavities with transmissive elements,” Optics Letters, vol. 40, no. 5, p. 843, 2015
[51] A. Sennaroglu, and J. Fujimoto, “Design criteria for Herriott-type multi-pass cavities for ultrashort pulse lasers,” Optics Express, vol. 11, no. 9, p. 1106, 2003
[52] D. R. Herriott, and H. J. Schulte, “Folded Optical Delay Lines,” Applied Optics, vol. 4, no. 8, p. 883, 1965
[53] A. E. Siegman Lasers, Revised, University Science Books, Sausalito, California, 1986
[54] L. Yan, Y.-Q. Liu, and C. Lee, “Pulse temporal and spatial chirping by a bulk Kerr medium in a regenerative amplifier,” IEEE Journal of Quantum Electronics, vol. 30, no. 9, pp. 2194–2202, 1994
[55] , “Heraeus Transmission Calculator for Optical Applications,”, 2022,