• Photonics Research
  • Vol. 9, Issue 6, 899 (2021)
Sandeep Kumar Kalva1、2, Xose Luis Dean-Ben1、2, and Daniel Razansky1、2、*
Author Affiliations
  • 1Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, Switzerland
  • 2Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
  • show less
    DOI: 10.1364/PRJ.418591 Cite this Article Set citation alerts
    Sandeep Kumar Kalva, Xose Luis Dean-Ben, Daniel Razansky. Single-sweep volumetric optoacoustic tomography of whole mice[J]. Photonics Research, 2021, 9(6): 899 Copy Citation Text show less
    References

    [1] F. Kiessling, B. J. Pichler. Small Animal Imaging: Basics and Practical Guide(2010).

    [2] M. Baker. The whole picture. Nature, 463, 977-979(2010).

    [3] C. Badea, M. Drangova, D. W. Holdsworth, G. A. Johnson. In vivo small-animal imaging using micro-CT and digital subtraction angiography. Phys. Med. Biol., 53, R319-R350(2008).

    [4] R. G. Pautler, S. C. Fraser. The year(s) of the contrast agent–micro-MRI in the new millennium. Curr. Opin. Immunol., 15, 385-392(2003).

    [5] H. Benveniste, S. Blackband. MR microscopy and high resolution small animal MRI: applications in neuroscience research. Prog. Neurobiol., 67, 393-420(2002).

    [6] H. R. Herschman. Micro-PET imaging and small animal models of disease. Curr. Opin. Immunol., 15, 378-384(2003).

    [7] L. A. Wirtzfeld, G. Wu, M. Bygrave, Y. Yamasaki, H. Sakai, M. Moussa, J. I. Izawa, D. B. Downey, N. M. Greenberg, A. Fenster, J. W. Xuan, J. C. Lacefield. A new three-dimensional ultrasound microimaging technology for preclinical studies using a transgenic prostate cancer mouse model. Cancer Res., 65, 6337-6345(2005).

    [8] A. Greco, M. Mancini, S. Gargiulo, M. Gramanzini, P. P. Claudio, A. Brunetti, M. Salvatore. Ultrasound biomicroscopy in small animal research: applications in molecular and preclinical imaging. J. Biomed. Biotechnol., 2012, 519238(2012).

    [9] A. H. Hielscher. Optical tomographic imaging of small animals. Curr. Opin. Biotechnol., 16, 79-88(2005).

    [10] M. Yang, E. Baranov, P. Jiang, F.-X. Sun, X.-M. Li, L. Li, S. Hasegawa, M. Bouvet, M. Al-Tuwaijri, T. Chishima, H. Shimada, A. R. Moossa, S. Penman, R. M. Hoffman. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA, 97, 1206-1211(2000).

    [11] F. Leblond, S. C. Davis, P. A. Valdés, B. W. Pogue. Pre-clinical whole-body fluorescence imaging: review of instruments, methods and applications. J. Photochem. Photobiol. B, 98, 77-94(2010).

    [12] P. Beard. Biomedical photoacoustic imaging. Interface Focus, 1, 602-631(2011).

    [13] S. Manohar, D. Razansky. Photoacoustics: a historical review. Adv. Opt. Photon., 8, 586-617(2016).

    [14] M. Heijblom, D. Piras, M. Brinkhuis, J. C. G. van Hespen, F. M. van den Engh, M. van der Schaaf, J. M. Klaase, T. G. van Leeuwen, W. Steenbergen, S. Manohar. Photoacoustic image patterns of breast carcinoma and comparisons with magnetic resonance imaging and vascular stained histopathology. Sci. Rep., 5, 11778(2015).

    [15] L. V. Wang, S. Hu. Photoacoustic tomography: in vivo imaging from organelles to organs. Science, 335, 1458-1462(2012).

    [16] X. L. Dean-Ben, S. J. Ford, D. Razansky. High-frame rate four dimensional optoacoustic tomography enables visualization of cardiovascular dynamics and mouse heart perfusion. Sci. Rep., 5, 10133(2015).

    [17] A. Özbek, X. L. Deán-Ben, D. Razansky. Optoacoustic imaging at kilohertz volumetric frame rates. Optica, 5, 857-863(2018).

    [18] K. Sivasubramanian, M. Pramanik. High frame rate photoacoustic imaging at 7000 frames per second using clinical ultrasound system. Biomed. Opt. Express, 7, 312-323(2016).

    [19] J. Gateau, M. A. A. Caballero, A. Dima, V. Ntziachristos. Three-dimensional optoacoustic tomography using a conventional ultrasound linear detector array: whole-body tomographic system for small animals. Med. Phys., 40, 013302(2013).

    [20] H.-P. F. Brecht, R. Su, M. Fronheiser, S. A. Ermilov, A. Conjusteau, A. A. Oraevsky. Whole-body three-dimensional optoacoustic tomography system for small animals. J. Biomed. Opt., 14, 064007(2009).

    [21] J. Xia, M. R. Chatni, K. Maslov, Z. Guo, K. Wang, M. Anastasio, L. V. Wang. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo. J. Biomed. Opt., 17, 050506(2012).

    [22] D. Razansky, A. Buehler, V. Ntziachristos. Volumetric real-time multispectral optoacoustic tomography of biomarkers. Nat. Protoc., 6, 1121-1129(2011).

    [23] R. Kruger, D. Reinecke, G. Kruger, M. Thornton, P. Picot, T. Morgan, K. Stantz, C. Mistretta. HYPR-spectral photoacoustic CT for preclinical imaging. Proc. SPIE, 7177, 71770F(2009).

    [24] J. Lv, Y. Peng, S. Li, Z. Guo, Q. Zhao, X. Zhang, L. Nie. Hemispherical photoacoustic imaging of myocardial infarction: in vivo detection and monitoring. Eur. Radiol., 28, 2176-2183(2018).

    [25] X. L. Deán-Ben, D. Razansky. Adding fifth dimension to optoacoustic imaging: volumetric time-resolved spectrally enriched tomography. Light Sci. Appl., 3, e137(2014).

    [26] S. Gottschalk, T. F. Fehm, X. L. Deán-Ben, D. Razansky. Noninvasive real-time visualization of multiple cerebral hemodynamic parameters in whole mouse brains using five-dimensional optoacoustic tomography. J. Cereb. Blood Flow Metab., 35, 531-535(2015).

    [27] T. F. Fehm, X. L. Deán-Ben, S. J. Ford, D. Razansky. In vivo whole-body optoacoustic scanner with real-time volumetric imaging capacity. Optica, 3, 1153-1159(2016).

    [28] X. L. Deán-Ben, T. F. Fehm, S. J. Ford, S. Gottschalk, D. Razansky. Spiral volumetric optoacoustic tomography visualizes multi-scale dynamics in mice. Light Sci. Appl., 6, e16247(2017).

    [29] . American National Standard for safe use of lasers(2007).

    [30] A. Ron, S. K. Kalva, V. Periyasamy, X. L. Deán-Ben, D. Razansky. Flash scanning volumetric optoacoustic tomography for high resolution whole-body tracking of nanoagent kinetics and biodistribution. Laser Photon. Rev., 15, 2000484(2021).

    [31] S. L. Jacques. Optical properties of biological tissues: a review. Phys. Med. Biol., 58, R37-R61(2013).

    [32] X. L. Dean-Ben, D. Razansky. Portable spherical array probe for volumetric real-time optoacoustic imaging at centimeter-scale depths. Opt. Express, 21, 28062-28071(2013).

    [33] X. L. Dean-Ben, A. Ozbek, D. Razansky. Volumetric real-time tracking of peripheral human vasculature with GPU-accelerated three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 32, 2050-2055(2013).

    [34] S. K. Kalva, M. Pramanik. Experimental validation of tangential resolution improvement in photoacoustic tomography using a modified delay-and-sum reconstruction algorithm. J. Biomed. Opt., 21, 086011(2016).

    [35] S. Nitkunanantharajah, C. Hennersperger, X. L. Dean-Ben, D. Razansky, N. Navab. Trackerless panoramic optoacoustic imaging: a first feasibility evaluation. Int. J. Comput. Assist. Radiol. Surg., 13, 703-711(2018).

    [36] S. Cinti. The adipose organ at a glance. Dis. Models Mech., 5, 588-594(2012).

    [37] A. Karlas, J. Reber, E. Liapis, K. Paul-Yuan, V. Ntziachristos. Multispectral optoacoustic tomography of brown adipose tissue. Brown Adipose Tissue, 325-336(2018).

    [38] A. Ron, X. L. Deán-Ben, J. Reber, V. Ntziachristos, D. Razansky. Characterization of brown adipose tissue in a diabetic mouse model with spiral volumetric optoacoustic tomography. Mol. Imaging Biol., 21, 620-625(2019).

    [39] X. L. Dean-Ben, A. Buehler, V. Ntziachristos, D. Razansky. Accurate model-based reconstruction algorithm for three-dimensional optoacoustic tomography. IEEE Trans. Med. Imaging, 31, 1922-1928(2012).

    [40] P. Hu, L. Li, L. Lin, L. V. Wang. Spatiotemporal antialiasing in photoacoustic computed tomography. IEEE Trans. Med. Imaging, 39, 3535-3547(2020).

    [41] L. Li, L. Zhu, C. Ma, L. Lin, J. Yao, L. Wang, K. Maslov, R. Zhang, W. Chen, J. Shi, L. V. Wang. Single-impulse panoramic photoacoustic computed tomography of small-animal whole-body dynamics at high spatiotemporal resolution. Nat. Biomed. Eng., 1, 0071(2017).

    [42] X. Song, B. W. Pogue, S. Jiang, M. M. Doyley, H. Dehghani, T. D. Tosteson, K. D. Paulsen. Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl. Opt., 43, 1053-1062(2004).

    [43] W. Song, Z. Tang, D. Zhang, N. Burton, W. Driessenb, X. Chen. Comprehensive studies of pharmacokinetics and biodistribution of indocyanine green and liposomal indocyanine green by multispectral optoacoustic tomography. RSC Adv., 5, 3807-3813(2015).

    [44] X. L. Deán-Ben, S. Gottschalk, B. Mc Larney, S. Shohamc, D. Razansky. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem. Soc. Rev., 46, 2158-2198(2017).

    [45] Y. Xu, L. V. Wang, G. Ambartsoumian, P. Kuchment. Reconstructions in limited-view thermoacoustic tomography. Med. Phys., 31, 724-733(2004).

    [46] L. Ding, X. L. Deán-Ben, D. Razansky. Efficient 3-D model-based reconstruction scheme for arbitrary optoacoustic acquisition geometries. IEEE Trans. Med. Imaging, 36, 1858-1867(2017).

    [47] A. Ron, N. Davoudi, X. L. Deán-Ben, D. Razansky. Self-gated respiratory motion rejection for optoacoustic tomography. Appl. Sci., 9, 2737(2019).

    [48] N. L. Ford, H. N. Nikolov, C. J. D. Norley, M. M. Thornton, P. J. Foster, M. Drangova, D. W. Holdsworth. Prospective respiratory-gated micro-CT of free breathing rodents. Med. Phys., 32, 2888-2898(2005).

    [49] S. J. Schambach, S. Bag, L. Schilling, C. Groden, M. A. Brockmann. Application of micro-CT in small animal imaging. Methods, 50, 2-13(2010).

    [50] J. Xia, W. Chen, K. Maslov, M. A. Anastasio, L. V. Wang. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice. J. Biomed. Opt., 19, 016003(2014).

    Sandeep Kumar Kalva, Xose Luis Dean-Ben, Daniel Razansky. Single-sweep volumetric optoacoustic tomography of whole mice[J]. Photonics Research, 2021, 9(6): 899
    Download Citation