• Laser & Optoelectronics Progress
  • Vol. 57, Issue 1, 011601 (2020)
Xiaofeng Shang1, Shishuo Li1、2, Zhiguo Wang2、3、*, Jibin Zhao2、3, Yuhui Zhao2、3、**, Zhenfeng He1, and Changwu Nie1
Author Affiliations
  • 1School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
  • 2Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning 110016, China
  • 3Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, Liaoning 110169, China
  • show less
    DOI: 10.3788/LOP57.011601 Cite this Article Set citation alerts
    Xiaofeng Shang, Shishuo Li, Zhiguo Wang, Jibin Zhao, Yuhui Zhao, Zhenfeng He, Changwu Nie. Effects of Processing Parameters on Morphology and Microstructure of Plasma Arc Deposition Using 316L Stainless Steel[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011601 Copy Citation Text show less
    References

    [1] Cheng X N, Dai Q X[M]. Austenite design and control, 4-5(2005).

    [2] Duan X X, Gao S Y, Gu Y F et al. Study on reinforcement mechanism and frictional wear properties of 316L-SiC mixed layer deposited by laser cladding[J]. Chinese Journal of Lasers, 43, 0103004(2016).

    [3] Raj B, Mudali U K. Materials development and corrosion problems in nuclear fuel reprocessing plants[J]. Progress in Nuclear Energy, 48, 283-313(2006).

    [4] Schwendner K I, Banerjee R, Collins P C et al. Direct laser deposition of alloys from elemental powder blends[J]. Scripta Materialia, 45, 1123-1129(2001).

    [5] Pu Y S, Wang B Q, Zhang L G. Metal 3D printing technology[J]. Surface Technology, 47, 78-84(2018).

    [6] Kamath C, El-Dasher B, Gallegos G F et al. Density of additively-manufactured, 316L SS parts using laser powder-bed fusion at powers up to 400 W[J]. The International Journal of Advanced Manufacturing Technology, 74, 65-78(2014).

    [7] Yadroitsev I, Smurov I. Selective laser melting technology: from the single laser melted track stability to 3D parts of complex shape[J]. Physics Procedia, 5, 551-560(2010).

    [8] LaohaprapanonA, JeamwatthanachaiP, WongcumchangM, et al., 2011, 341/342: 816- 820.

    [9] Liu Y B, Sun Q J, Jiang Y L et al. 35(7): 1-4, Ⅰ(2014).

    [10] Martina F, Mehnen J, Williams S W et al. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V[J]. Journal of Materials Processing Technology, 212, 1377-1386(2012).

    [11] Luo Z, Zhang Y. 4): 13-16, Ⅰ[J]. Jia P. Additive manufacturing of Ti-6Al-4V titanium alloy parts based on micro-plasma arc surfacing. Welding & Joining(2016).

    [12] Bai J Y, Fan C L, Yang Y C et al. -Al thin-walled parts produced by shaped metal deposition[J]. Transactions of the China Welding Institution, 2016, 37(6): 124-128, Ⅵ.(2219).

    [13] Mok S H, Bi G J, Folkes J et al. Deposition of Ti-6Al-4V using a high power diode laser and wire, part I: investigation on the process characteristics[J]. Surface and Coatings Technology, 202, 3933-3939(2008).

    [14] Smurov I, Doubenskaia M, Zaitsev A. Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation[J]. Surface and Coatings Technology, 220, 112-121(2013).

    [15] Pan H, Zhao J F, Liu Y L et al. Controllability research on dilution ratio of nickel-based superalloy by laser cladding reparation[J]. Chinese Journal of Lasers, 40, 0403007(2013).

    [16] Yu J, Chen J, Tan H et al. Effect of process parameters in the laser rapid forming on deposition layer[J]. Chinese Journal of Lasers, 34, 1014-1018(2007).

    [17] Guo W, Li K K, Chai R X et al. Numerical simulation and experiment of dilution effect in laser cladding 304 stainless steel[J]. Laser & Optoelectronics Progress, 56, 051402(2019).

    [18] Chen G, Li X F, Zuo D W et al. Simulation on substrate relative dilution ratio for GH4033[J]. Laser & Optoelectronics Progress, 48, 011601(2011).

    [19] Katayama S, Fujimoto T, Matsunawa A. Correlation among solidification process, microstructure, microsegregation and solidification cracking susceptibility in stainless steel weld metals (materials, metallurgy & weldability)[J]. Transactions of JWRI, 14, 123-138(1985).

    [20] Schaeffler A L. Constitution diagram for stainless steel weld metal[J]. Metal Progress, 56, 680(1949).

    [21] Zhang B C, Dembinski L, Coddet C. The study of the laser parameters and environment variables effect on mechanical properties of high compact parts elaborated by selective laser melting 316L powder[J]. Materials Science and Engineering: A, 584, 21-31(2013).

    [22] Elmer J W, Allen S M, Eagar T W. Microstructural development during solidification of stainless steel alloys[J]. Metallurgical Transactions A, 20, 2117-2131(1989).

    [23] Chen X H, Li J, Cheng X et al. Microstructure and mechanical properties of the austenitic stainless steel 316L fabricated by gas metal arc additive manufacturing[J]. Materials Science and Engineering: A, 703, 567-577(2017).

    Xiaofeng Shang, Shishuo Li, Zhiguo Wang, Jibin Zhao, Yuhui Zhao, Zhenfeng He, Changwu Nie. Effects of Processing Parameters on Morphology and Microstructure of Plasma Arc Deposition Using 316L Stainless Steel[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011601
    Download Citation