• Laser & Optoelectronics Progress
  • Vol. 58, Issue 24, 2428001 (2021)
Hongxing Niu1、**, Jing Gao1、2、*, and Kaiming Nie1、2
Author Affiliations
  • 1School of Microelectronics, Tianjin University, Tianjin 300072, China
  • 2Tianjin Key Laboratory of Imaging and Sensing Microelectronics Technology, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP202158.2428001 Cite this Article Set citation alerts
    Hongxing Niu, Jing Gao, Kaiming Nie. Modeling and Motion Error Analysis of a Time-of-Flight Image Sensor[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2428001 Copy Citation Text show less
    References

    [1] Fu Q Y, Zhou Z M, Jin D F et al. Triangular-wave modulation in a laser ranging system[J]. Chinese Journal of Lasers, 47, 0304006(2020).

    [2] Jiang B, Huang M S, Guan Z H. Pulsed laser ranging method using cyclostationary random sequences[J]. Chinese Journal of Lasers, 47, 0101004(2020).

    [3] Rezaei A, Schramm G, van Laere K et al. Estimation of crystal timing properties and efficiencies for the improvement of (joint) maximum-likelihood reconstructions in TOF-PET[J]. IEEE Transactions on Medical Imaging, 39, 952-963(2020).

    [4] Kraft M, Nowicki M, Penne R et al. Efficient RGB-D data processing for feature-based self-localization of mobile robots[J]. International Journal of Applied Mathematics and Computer Science, 26, 63-79(2016).

    [5] Huang M S, Guan Z H. A fast and high-precision pulse laser ranging method based on cursor principle[J]. Chinese Journal of Lasers, 46, 0510001(2019).

    [6] Lange R, Seitz P. Solid-state time-of-flight range camera[J]. IEEE Journal of Quantum Electronics, 37, 390-397(2001).

    [7] Jiang B, Jin X L. Improved correction algorithm for harmonic- and intensity-related errors in time-of-flight cameras[J]. Acta Optica Sinica, 40, 0111024(2020).

    [8] Lee S. Time-of-flight depth camera motion blur detection and deblurring[J]. IEEE Signal Processing Letters, 21, 663-666(2014).

    [9] Lefloch D, Hoegg T, Kolb A. Real-time motion artifacts compensation of ToF sensors data on GPU[J]. Proceedings of SPIE, 8738, 166-172(2013).

    [10] Lottner O, Sluiter A, Hartmann K et al. Movement artefacts in range images of time-of-flight cameras[C]. //2007 International Symposium on Signals, Circuits and Systems, July 13-14, 2007, Iasi, Romania., 1-4(2007).

    [11] Schmidt M, Jähne B. Efficient and robust reduction of motion artifacts for 3D time-of-flight cameras[C]. //2011 International Conference on 3D Imaging (IC3D), December 7-8, 2011, Liege, Belgium., 1-8(2011).

    [12] Lee S, Kang B, Kim J D K et al. Motion blur-free time-of-flight range sensor[J]. Proceedings of SPIE, 8298, 265-270(2012).

    [14] Phong B T. Illumination for computer generated pictures[J]. Communications of the ACM, 18, 311-317(1975).

    [15] Cho J, Choi J, Kim S J et al. A 3-D camera with adaptable background light suppression using pixel-binning and super-resolution[J]. IEEE Journal of Solid-State Circuits, 49, 2319-2332(2014).

    [16] Mase M, Kawahito S, Sasaki M et al. A wide dynamic range CMOS image sensor with multiple exposure-time signal outputs and 12-bit column-parallel cyclic A/D converters[J]. IEEE Journal of Solid-State Circuits, 40, 2787-2795(2005).

    [17] Ge X L. The design of a global shutter CMOS image sensor in 110 nm technology[D](2012).

    Hongxing Niu, Jing Gao, Kaiming Nie. Modeling and Motion Error Analysis of a Time-of-Flight Image Sensor[J]. Laser & Optoelectronics Progress, 2021, 58(24): 2428001
    Download Citation