• Acta Optica Sinica
  • Vol. 32, Issue 9, 906006 (2012)
Yu Gang1、2、*, Xie Xiaoping1、3, Zhao Wei1, Wang Wei1, and Duan Tao1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    DOI: 10.3788/aos201232.0906006 Cite this Article Set citation alerts
    Yu Gang, Xie Xiaoping, Zhao Wei, Wang Wei, Duan Tao. Influence of Aperture Averaging on Bit-Error Rate of Spatial Coherent Optical Communication Systems Using Phase Compensation Technique[J]. Acta Optica Sinica, 2012, 32(9): 906006 Copy Citation Text show less
    References

    [1] A. H. Mikesell, A. A. Hoag, J. S. Hall. The scintillation of starlight[J]. J. Opt. Soc. Am., 1951, 41(10): 689~695

    [2] D. L. Fried. Aperture averaging of scintillation[J]. J. Opt. Soc. Am., 1967, 57(2): 169~175

    [3] A. I. Kon. Averaging of spherical-wave fluctuation over a receiving aperture[J]. Radiophys. Quantum Electron., 1969, 12(1): 122~124

    [4] G. E. Homstad, J. W. Strohbehn, R. H. Berger et al.. Aperture-averaging effects for weak scintillations[J]. J. Opt. Soc. Am., 1974, 64(2): 162~165

    [5] H. T. Yura, W. G. McKinley. Aperture averaging of scintillations of space-to-ground optical communication applications[J]. Appl. Opt., 1983, 22(11): 1608~1609

    [6] J. H. Churnside. Aperture averaging of optical scintillations in the turbulent atmosphere[J]. Appl. Opt., 1991, 30(15): 1982~1994

    [7] R. F. Lutomirshi, H. T. Yura. Aperture-averaging factor of a fluctuating light signal[J]. J. Opt. Soc. Am., 1969, 59(9): 1247~1248

    [8] S. J. Wang, Y. Baykal, M. A. Plonus. Receiver-aperture averaging effects for the intensity fluctuation of a beam wave in the turbulence atmosphere[J]. J. Opt. Soc. Am., 1983, 73(6): 831~837

    [9] L. C. Andrews. Aperture-averaging factor for optical scintillations of plane and spherical waves in the atmosphere[J]. J. Opt. Soc. Am. A, 1992, 9(4): 597~600

    [10] L. C. Andrews, R. L. Philips, C. Y. Hopen. Aperture averaging of optical scintillations: power fluctuations and the temporal spectrum[J]. Waves Random Media, 2000, 10(1): 53~70

    [11] F. S. Vetelino, C. Young, L. C. Andrews et al.. Aperture averaging effects on the probability density of irradiance fluctuations in the moderate-to-strong turbulence[J]. Appl. Opt., 2007, 46(11): 2099~2108

    [12] Rao Ruizhong, Gong Zhiben, Wang Shipeng et al.. Aperture averaging of saturated scintillation of laser propagation in the atmosphere[J]. Acta Optica Sinica, 2002, 22(1): 36~40

    [13] L. C. Andrews, R. L. Phillips. Laser Beam Propagation through Random Media[M]. Washington: SPIE Press, 2005

    [14] H. Yuksel. Aperture averaging for optimizing receiver design and system performance on free-space optical communication links[J]. J. Opt. Netw., 2005, 4(8): 462~475

    [15] F. S. Vetelino, C. Young, L. C. Andrews. Fade statistics and aperture averaging for Gaussian beam waves in moderate-to-strong turbulence[J]. Appl. Opt., 2007, 46(18): 3780~3789

    [16] M. A. Khalighi, N. Schwartz, N. Aitamer et al.. Fading reduction by aperture averaging and spatial diversity in optical wireless systems[J]. J. Opt. Commun. Netw., 2009, 1(6): 580~593

    [17] Yang Changqi, Jiang Wenhan, Rao Changhui. Impact of aperture averaging on bit-error rate for free-space optical communication[J]. Acta Optica Sinica, 2007, 27(2): 212~218

    [18] Xu Nan, Liu Liren, Liu De′an et al.. Technologies and recent progress of coherent optical communications in free space[J]. Laser & Optoelectronics Progress, 2007, 44(8): 44~51

    [19] Pan Feng, Ma Jing, Tan Liying et al.. Theoretical and experimental study on power spectrum of atmospheric scintillation with aperture receiving[J]. High Power and Particle Beams, 2006, 18(9): 1457~1459

    [20] Li Xinyang, Jiang Wenhan, Wang Chunhong et al.. Power spectral analysis of the disturbed wavefront in laser beam horizontal atmospheric propagation II: wavefront phase and greenwood frequency[J]. Acta Optica Sinica, 2000, 20(8): 1035~1042

    [21] L. C. Andrews, R. L. Phillips, C. Y. Hopen. Laser Beam Scintillation with Applications[M]. Washington: SPIE Press, 2001

    [22] L. Fried. Optical heterodyne detection of an atmospherically distorted signal wave front[J]. Proc. IEEE, 1967, 55(1): 57~67

    [23] J. H. Churnside, C. M. McIntyre. Signal current probability distribution for optical heterodyne receivers in the turbulent atmosphere. 1: theory[J]. Appl. Opt., 1978, 17(14): 2141~2147

    [24] K. A. Winick. Atmospheric turbulence-induced signal fades on optical heterodyne communication links[J]. Appl. Opt., 1986, 25(11): 1817~1825

    [25] M. P. statistics, V. F. Canales. Speckle statistics in partially corrected wave fronts[J]. Opt. Lett., 1998, 23(14): 1072~1074

    [26] A. Belmonte, J. M. Kahn. Performance of synchronous optical receivers using atmospheric compensation techniques[J]. Opt. Express, 2008, 16(18): 14151~14162

    [27] R. J. Noll. Zernike polynomials and atmospheric turbulence[J]. J. Opt. Soc. Am., 1976, 66(3): 207~211

    [28] Yan Zhaojun, Li Xinyang, Rao Changhui. Numerical simulation of a prediction control algorithm for close-loop adaptive optical system [J]. Acta Optica Sinica, 2011, 31(1): 0101003

    [29] Li Bangming, Li Changwei, Zhang Sijiong. Dynamic optimization method for modal control of adaptive optics system [J]. Acta Optica Sinica, 2012, 32(4): 0401005

    Yu Gang, Xie Xiaoping, Zhao Wei, Wang Wei, Duan Tao. Influence of Aperture Averaging on Bit-Error Rate of Spatial Coherent Optical Communication Systems Using Phase Compensation Technique[J]. Acta Optica Sinica, 2012, 32(9): 906006
    Download Citation