• Photonics Research
  • Vol. 11, Issue 2, 203 (2023)
Ruichao Zhu1, Jiafu Wang1、4、*, Yajuan Han1, Yuxiang Jia1, Tonghao Liu1, Tianshuo Qiu1, Sai Sui1, Yongfeng Li1, Mingbao Yan1, Shaobo Qu1, and Cheng-Wei Qiu2、3、5、*
Author Affiliations
  • 1Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi’an 710051, China
  • 2Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
  • 3NUS Suzhou Research Institute (NUSRI), Suzhou 215000, China
  • 4e-mail: wangjiafu1981@126.com
  • 5e-mail: chengwei.qiu@nus.edu.sg
  • show less
    DOI: 10.1364/PRJ.475471 Cite this Article Set citation alerts
    Ruichao Zhu, Jiafu Wang, Yajuan Han, Yuxiang Jia, Tonghao Liu, Tianshuo Qiu, Sai Sui, Yongfeng Li, Mingbao Yan, Shaobo Qu, Cheng-Wei Qiu. Virtual metasurfaces: reshaping electromagnetic waves in distance[J]. Photonics Research, 2023, 11(2): 203 Copy Citation Text show less
    References

    [1] R. A. Shelby, D. R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).

    [2] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, S. Schultz. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett., 84, 4184-4187(2000).

    [3] J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech., 47, 2075-2084(1999).

    [4] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang. Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379(2008).

    [5] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [6] C. Ma, Z. Liu. A super resolution metalens with phase compensation mechanism. Appl. Phys. Lett., 96, 183103(2010).

    [7] X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, R. Liu. Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Appl. Phys. Lett., 92, 131904(2008).

    [8] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980(2006).

    [9] H. Chen, B.-I. Wu, B. Zhang, J. A. Kong. Electromagnetic wave interactions with a metamaterial cloak. Phys. Rev. Lett., 99, 063903(2007).

    [10] S. Sun, Q. He, J. Hao, S. Xiao, L. Zhou. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photon., 11, 380-479(2019).

    [11] Y. Nanfang, G. Patrice, M. A. Kats, A. Francesco, T. Jean-Philippe, C. Federico, G. Zeno. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [12] X. Luo. Principles of electromagnetic waves in metasurfaces. Sci. China Phys. Mech. Astron., 58, 594201(2015).

    [13] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, S. Zhang. Dispersionless phase discontinuities for controlling light propagation. Nano Lett., 12, 5750-5755(2012).

    [14] C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, D. R. Smith. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag., 54, 10-35(2012).

    [15] Q. He, S. Sun, S. Xiao, L. Zhou. High-efficiency metasurfaces: principles, realizations, and applications. Adv. Opt. Mater., 6, 1800415(2018).

    [16] A. Li, S. Singh, D. Sievenpiper. Metasurfaces and their applications. Nanophotonics, 7, 989-1011(2018).

    [17] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [18] F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, F. Capasso. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities. Nano Lett., 12, 1702-1706(2012).

    [19] X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2011).

    [20] S. Sun, Q. He, S. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [21] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, D. P. Tsai. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [22] D. Jia, Y. Tian, W. Ma, X. Gong, J. Yu, G. Zhao, X. Yu. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Opt. Lett., 42, 4494-4497(2017).

    [23] L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C.-W. Qiu, S. Zhang. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 8, 197(2017).

    [24] Q. Wang, E. Plum, Q. Yang, X. Zhang, Q. Xu, Y. Xu, J. Han, W. Zhang. Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves. Light Sci. Appl., 7, 25(2018).

    [25] L. Huang, X. Chen, H. Mühlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [26] J. Burch, A. Di Falco. Surface topology specific metasurface holograms. ACS Photon., 5, 1762-1766(2018).

    [27] E. Karimi, S. A. Schulz, I. De Leon, H. Qassim, J. Upham, R. W. Boyd. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl., 3, e167(2014).

    [28] S. Yu, L. Li, G. Shi, C. Zhu, Y. Shi. Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain. Appl. Phys. Lett., 108, 241901(2016).

    [29] Z. Jin, D. Janoschka, J. Deng, L. Ge, P. Dreher, B. Frank, G. Hu, J. Ni, Y. Yang, J. Li, C. Yu, D. Lei, G. Li, S. Xiao, S. Mei, H. Giessen, F. M. Zu Heringdorf, C.-W. Qiu. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight, 1, 5(2021).

    [30] X. Li, S. Xiao, B. Cai, Q. He, T. J. Cui, L. Zhou. Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett., 37, 4940-4942(2012).

    [31] E. Hasman, V. Kleiner, G. Biener, A. Niv. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett., 82, 328-330(2003).

    [32] K. Zhang, Y. Wang, Y. Yuan, S. N. Burokur. A review of orbital angular momentum vortex beams generation: from traditional methods to metasurfaces. Appl. Sci., 10, 1015(2020).

    [33] H. Ahmed, H. Kim, Y. Zhang, Y. Intaravanne, J. Jang, J. Rho, S. Chen, X. Chen. Optical metasurfaces for generating and manipulating optical vortex beams. Nanophotonics, 11, 941-956(2022).

    [34] A. Martins, J. Li, A. F. da Mota, V. M. Pepino, Y. Wang, L. G. Neto, F. L. Teixeira, E. R. Martins, B.-H. V. Borges. Broadband c-Si metasurfaces with polarization control at visible wavelengths: applications to 3D stereoscopic holography. Opt. Express, 26, 30740-30752(2018).

    [35] Q. Song, A. Baroni, R. Sawant, P. Ni, V. Brandli, S. Chenot, S. Vézian, B. Damilano, P. de Mierry, S. Khadir, P. Ferrand. Ptychography retrieval of fully polarized holograms from geometric-phase metasurfaces. Nat. Commun., 11, 2651(2020).

    [36] L. Huang, S. Zhang, T. Zentgraf. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169-1190(2018).

    [37] K. Choi, H. Kim, B. Lee. Synthetic phase holograms for auto-stereoscopic image displays using a modified IFTA. Opt. Express, 12, 2454-2462(2004).

    [38] M. Makowski, M. Sypek, A. Kolodziejczyk, G. Mikula. Three-plane phase-only computer hologram generated with iterative Fresnel algorithm. Opt. Eng., 44, 125805(2005).

    [39] R. D. Leonardo, F. Ianni, G. Ruocco. Computer generation of optimal holograms for optical trap arrays. Opt. Express, 15, 1913-1922(2007).

    [40] P. Sun, S. Chang, S. Liu, X. Tao, C. Wang, Z. Zheng. Holographic near-eye display system based on double-convergence light Gerchberg-Saxton algorithm. Opt. Express, 26, 10140-10151(2018).

    [41] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 3, e218(2014).

    [42] Y. Shuang, H. Zhao, M. Wei, Q. Cheng, S. Jin, T. Cui, P. D. Hougne, L. Li. One-bit quantization is good for programmable coding metasurfaces. Sci. China Inf. Sci., 65, 172301(2022).

    [43] Y. Han, J. Zhang, Y. Li, J. Wang, S. Qu, H. Yuan, J. Yu. Miniaturized-element offset-feed planar reflector antennas based on metasurfaces. IEEE Antennas Wireless Propag. Lett., 16, 282-285(2017).

    [44] R. Li, Z. Guo, W. Wang, J. Zhang, K. Zhou, J. Liu, S. Qu, S. Liu, J. Gao. Arbitrary focusing lens by holographic metasurface. Photon. Res., 3, 252-255(2015).

    [45] H. Zhu, T. Xu, Z. Wang, J. Li, Z. Hang, L. Zhou, S. Chen, X. Li, L. Chen. Flat metasurfaces to collimate electromagnetic waves with high efficiency. Opt. Express, 26, 28531-28543(2018).

    [46] C. Pfeiffer, A. Grbic. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett., 110, 197401(2013).

    [47] A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, A. Faraon. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun., 6, 7069(2015).

    [48] K. Chen, Y. Feng, F. Monticone, J. Zhao, B. Zhu, T. Jiang, L. Zhang, Y. Kim, X. Ding, S. Zhang, A. Alù. A reconfigurable active huygens’ metalens. Adv. Mater., 29, 1606422(2017).

    Ruichao Zhu, Jiafu Wang, Yajuan Han, Yuxiang Jia, Tonghao Liu, Tianshuo Qiu, Sai Sui, Yongfeng Li, Mingbao Yan, Shaobo Qu, Cheng-Wei Qiu. Virtual metasurfaces: reshaping electromagnetic waves in distance[J]. Photonics Research, 2023, 11(2): 203
    Download Citation