• Laser & Optoelectronics Progress
  • Vol. 58, Issue 21, 2127001 (2021)
Weidong Luo1, Xuan Zhou2、3, Xiaoqing Zhou2、*, Yunwen Wu1、**, and Shangjiang Huang1
Author Affiliations
  • 1College of Physics, Mechanical and Electrical Engineering, Jishou University,Jishou, Hunan 416000, China
  • 2College of Information Science and Engineering, Jishou University, Jishou, Hunan 416000, China
  • 3Hunan Province Higher Education Key Laboratory of Modeling and Monitoring;on the Near-Earth Electromagnetic Environments, Changsha University of Science and;Technology, Changsha , Hunan 410015, China
  • show less
    DOI: 10.3788/LOP202158.2127001 Cite this Article Set citation alerts
    Weidong Luo, Xuan Zhou, Xiaoqing Zhou, Yunwen Wu, Shangjiang Huang. Evolution Characteristics of Three-Qubit Quantum Entanglement Under External Field Effect[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2127001 Copy Citation Text show less
    References

    [1] Wang Q, Wang X Q. Properties of entanglement in one-dimensional Ising model with a tilted magnetic field[J]. Acta Physica Sinica, 62, 220301(2013).

    [2] Chilingaryan S A, Rodríguez-Lara B M. The quantum Rabi model for two qubits[J]. Journal of Physics A: Mathematical and Theoretical, 46, 335301(2013).

    [3] Xu Y H, Ren X Z, Liu X Y. Entanglement evolution characteristics of quantum Rabi models with two arbitrary qubits[J]. Acta Optica Sinica, 38, 0127001(2018).

    [4] Pati A K. Minimum classical bit for remote preparation and measurement of a qubit[J]. Physical Review A, 63, 014302(2000).

    [5] Zhou X Q, Wu Y W, Zhao H. Quantum teleportation internetworking and routing strategy[J]. Acta Physica Sinica, 60, 040304(2011).

    [6] Wu Y W, Deng Y, Zhou X Q et al. Quantum properties of information each other between two nods[J]. Acta Photonica Sinica, 45, 0327001(2016).

    [7] Duan L W, He S, Chen Q H. Concise analytic solutions to the quantum Rabi model with two arbitrary qubits[J]. Annals of Physics, 355, 121-129(2015).

    [8] Liu C, Wu Y W. Quantum phase gate on a single superconducting Λ-type three-level and two superconducting resonators[J]. Acta Physica Sinica, 67, 170302(2018).

    [9] Chen Q H, Liu T, Zhang Y Y et al. Quantum phase transitions in coupled two-level atoms in a single-mode cavity[J]. Physical Review A, 82, 053841(2010).

    [10] Peng J, Wu Y W, Li X J. Quantum dynamic behaviour in a coupled cavities system[J]. Chinese Physics B, 21, 060302(2012).

    [11] Peng J, Wu Y W, Li X J. Realization of Toffoli gate based on superconducting quantum-interference devices in cavity quantum electrodynamics[J]. Acta Photonica Sinica, 40, 466-470(2011).

    [12] Dong K. Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator[J]. Chinese Physics B, 25, 124202(2016).

    [13] Zhu Y W, Wu Y W, Peng J et al. Dynamic characteristics of double cavity coupled system driven by laser pulse[J]. Chinese Journal of Quantum Electronics, 34, 175-183(2017).

    [14] Sillanpää M A, Park J I, Simmonds R W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity[J]. Nature, 449, 438-442(2007).

    [15] Cong H L, Ren X Z, Liao X. Quantum properties of two-photon Jaynes-Cummings model without rotating wave approximation[J]. Acta Optica Sinica, 35, 0727002(2015).

    [16] Feng J P, Ren X Z. Steady state energy spectrum and the entanglement evolution of Tavis-Cummings model without rotating wave approximation[J]. Acta Photonica Sinica, 44, 0827003(2015).

    [17] Peng J, Ren Z Z, Guo G J et al. Exact solutions of the generalized two-photon and two-qubit Rabi models[J]. The European Physical Journal D, 67, 162(2013).

    [18] Mao L J, Huai S N, Zhang Y B. The two-qubit quantum Rabi model: inhomogeneous coupling[J]. Journal of Physics A: Mathematical and Theoretical, 48, 345302(2015).

    [19] Wootters W K. Entanglement of formation of an arbitrary state of two qubits[J]. Physica Review Letters, 80, 2245-2248(1998).

    [20] Liu C, Wu Y W. Entanglement dynamics properties of the system consisting of a Λ-type atom trapped in two-mode cavity[J]. Journal of Atomic and Molecular Physics, 35, 286-292(2018).

    [21] Hu X Y, Fan H, Zhou D L et al. Necessary and sufficient conditions for local creation of quantum correlation[J]. Physical Review A, 85, 032102(2012).

    [22] Lu F. Controllable quantum entanglement based on cavity structure[J]. Laser & Optoelectronics Progress, 56, 042701(2019).

    [23] Guo Z Y, Zhang X H, Xiao R H et al. Dynamics of quantum entanglement in a two-qubit XXZ Heisenberg system[J]. Acta Optica Sinica, 34, 0727001(2014).

    [24] Zheng X L, Zhang B. Quantum entanglement and correlations between two qubits induced by a heat bath[J]. Acta Optica Sinica, 34, 127002(2014).

    [25] Wang Y H, Xia Y J. Pairwise entanglement in three-qubit Heisenberg model with Dzyaloshinskii-Moriya interaction[J]. Acta Physica Sinica, 58, 7479-7485(2009).

    [26] Yu W R, Ji X. Superadiabatic scheme for fast generating Greenberger-Horne-Zeilinger state of three superconducting qubits[J]. Acta Physica Sinica, 68, 0303002(2019).

    [27] Abliz A, Gao H J, Xie X C et al. Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields[J]. Physical Review A, 74, 052105(2006).

    [28] Li Z G, Fei S M, Wang Z D et al. Evolution equation of entanglement for bipartite systems[J]. Physical Review A, 79, 024303(2009).

    Weidong Luo, Xuan Zhou, Xiaoqing Zhou, Yunwen Wu, Shangjiang Huang. Evolution Characteristics of Three-Qubit Quantum Entanglement Under External Field Effect[J]. Laser & Optoelectronics Progress, 2021, 58(21): 2127001
    Download Citation