• Laser & Optoelectronics Progress
  • Vol. 58, Issue 10, 1011026 (2021)
Mingfei Li1、2、*, Zihao Yuan1、2, Yuanxing Liu1、2, and Yicheng Deng1、2
Author Affiliations
  • 1Beijing Institute of Aerospace Control Devices, Beijing 100039, China
  • 2Quantum Engineering Research Center, China Aerospace Science and Technology Corporation, Beijing 100094, China
  • show less
    DOI: 10.3788/LOP202158.1011026 Cite this Article Set citation alerts
    Mingfei Li, Zihao Yuan, Yuanxing Liu, Yicheng Deng. Photon Counting Computational Ghost Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011026 Copy Citation Text show less
    References

    [1] Pittman T B, Shih Y H, Strekalov D V et al. Optical imaging by means of two-photon quantum entanglement[J]. Physical Review A, 52, R3429(1995). http://europepmc.org/abstract/med/9912767

    [2] Abouraddy A F, Saleh B E, Sergienko A V et al. Role of entanglement in two-photon imaging[J]. Physical Review Letters, 87, 123602(2001). http://europepmc.org/abstract/MED/11580511

    [3] Bennink R S, Bentley S J, Boyd R W. “Two-photon” coincidence imaging with a classical source[J]. Physical Review Letters, 89, 113601(2002). http://www.ncbi.nlm.nih.gov/pubmed/12225140

    [4] Gatti A, Brambilla E, Bache M et al. Correlated imaging, quantum and classical[J]. Physical Review A, 70, 013802(2004).

    [5] Gatti A, Brambilla E, Bache M et al. Ghost imaging with thermal light: comparing entanglement and classical correlation[J]. Physical Review Letters, 93, 093602(2004).

    [6] Cao D Z, Xiong J, Wang K G. Geometrical optics in correlated imaging systems[J]. Physical Review A, 71, 013801(2005). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000071000001013801000001&idtype=cvips&gifs=Yes

    [7] Cai Y J, Zhu S Y. Ghost imaging with incoherent and partially coherent light radiation[J]. Physical Review E, 71, 056607(2005). http://www.ncbi.nlm.nih.gov/pubmed/16089668

    [8] Zhang D, Zhai Y H, Wu L A et al. Correlated two-photon imaging with true thermal light[J]. Optics Letters, 30, 2354-2356(2005). http://www.researchgate.net/publication/7569406_Correlated_two-photon_imaging_with_true_thermal_light

    [9] Shapiro J H. Computational ghost imaging[J]. Physical Review A, 78, 061802(2008).

    [10] Duarte M F, Davenport M A, Takhar D et al. Single-pixel imaging via compressive sampling[J]. IEEE Signal Processing Magazine, 25, 83-91(2008). http://ieeexplore.ieee.org/document/4472247/references?signout=success

    [11] Zhang P L, Gong W L, Shen X et al. Correlated imaging through atmospheric turbulence[J]. Physical Review A, 82, 033817(2010). http://arxiv.org/abs/1005.5011

    [12] Meyers R E, Deacon K S, Shih Y. Turbulence-free ghost imaging[J]. Applied Physics Letters, 98, 111115(2011).

    [13] Gong W L, Han S S. Super-resolution far-field ghost imaging via compressive sampling[EB/OL]. (2009-11-25)[2021-02-20]. https://arxiv.org/abs/0911.4750

    [14] Li W W, Tong Z S, Xiao K et al. Single-frame wide-field nanoscopy based on ghost imaging via sparsity constraints[J]. Optica, 6, 1515-1523(2019). http://arxiv.org/abs/1906.05452v1

    [15] Liu Z T, Tan S Y, Wu J R et al. Spectral camera based on ghost imaging via sparsity constraints[J]. Scientific Reports, 6, 1-10(2016). http://pubmedcentralcanada.ca/pmcc/articles/PMC4867594/

    [16] Howland G A, Dixon P B, Howell J C. Photon-counting compressive sensing laser radar for 3D imaging[J]. Applied Optics, 50, 5917-5920(2011).

    [17] Du K M, Jiang Y D, Chen Y et al. Photon-counting imaging system based on compressive sensing[J]. Infrared and Laser Engineering, 41, 363-368(2012).

    [18] Howland G A, Lum D J, Ware M R et al. Photon counting compressive depth mapping[J]. Optics Express, 21, 23822-23837(2013). http://europepmc.org/abstract/MED/24104293

    [19] Li M F, Yang R, Huo J et al. “Quantum” imaging of cooperative target based on photon-counting regime[J]. Acta Physica Sinica, 64, 014202(2015).

    [20] Bo Z W, Gong W L, Yan Y et al. Experimental research of ghost imaging based on photon counting[J]. Chinese Journal of Lasers, 43, 1104001(2016).

    [21] Sun M J, Edgar M P, Gibson G M et al. Single-pixel three-dimensional imaging with time-based depth resolution[J]. Nature Communications, 7, 12010(2016). http://www.ncbi.nlm.nih.gov/pubmed/27377197

    [22] Liu X F, Yao X R, Wang C et al. Quantum limit of photon-counting imaging based on compressed sensing[J]. Optics Express, 25, 3286-3296(2017). http://www.ncbi.nlm.nih.gov/pubmed/28241544/

    [23] Liu X L, Shi J H, Wu X et al. Fast first-photon ghost imaging[J]. Scientific Reports, 8, 5012(2018). http://www.ncbi.nlm.nih.gov/pubmed/29567969

    [24] Liu X L, Shi J H, Sun L et al. Photon-limited single-pixel imaging[J]. Optics Express, 28, 8132-8144(2020). http://www.researchgate.net/publication/339308452_Photon-limited_Single-pixel_Imaging/download

    [25] Li M F, Yan L, Yang R et al. Fast single-pixel imaging based on optimized reordering Hadamard basis[J]. Acta Physica Sinica, 68, 064202(2019).

    [26] Li M F, Yuan Z H, Zhao L L et al. Walsh bases and binary discrete cosine bases single-pixel imaging comparing[J]. Navigation and Control, 19, 40-47, 132(2020).

    [27] Harmany Z T, Marcia R F, Willett R M. This is SPIRAL-TAP:sparse Poisson intensity reconstruction algorithms: theory and practice[J]. IEEE Transactions on Image Processing, 21, 1084-1096(2012). http://www.ncbi.nlm.nih.gov/pubmed/21926022

    [28] Wu Z W, Qiu X D, Chen L X. Current status and prospect for correlated imaging technique[J]. Laser & Optoelectronics Progress, 57, 060001(2020).

    [29] Yuan S, Wang Z, Zhou X et al. Blind watermarking method based on binarized computational ghost imaging[J]. Acta Photonica Sinica, 49, 0210003(2020).

    [30] Hou X H, Jin G D, Tan L N. Survey of ship detection in SAR images based on deep learning[J]. Laser & Optoelectronics Progress, 58, 0400005(2021).

    Mingfei Li, Zihao Yuan, Yuanxing Liu, Yicheng Deng. Photon Counting Computational Ghost Imaging[J]. Laser & Optoelectronics Progress, 2021, 58(10): 1011026
    Download Citation