• Photonics Research
  • Vol. 11, Issue 12, 2222 (2023)
Dongrui Yu1, Ziyang Chen1、3、*, Xuan Yang2, Yunlong Xu2, Ziyi Jin2, Panxue Ma2, Yufei Zhang1, Song Yu2, Bin Luo2、4、*, and Hong Guo1、5、*
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, and Center for Quantum Information Technology, Peking University, Beijing 100871, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 3e-mail: chenziyang@pku.edu.cn
  • 4e-mail: luobin@bupt.edu.cn
  • 5e-mail: hongguo@pku.edu.cn
  • show less
    DOI: 10.1364/PRJ.498810 Cite this Article Set citation alerts
    Dongrui Yu, Ziyang Chen, Xuan Yang, Yunlong Xu, Ziyi Jin, Panxue Ma, Yufei Zhang, Song Yu, Bin Luo, Hong Guo. Time interval measurement with linear optical sampling at the femtosecond level[J]. Photonics Research, 2023, 11(12): 2222 Copy Citation Text show less
    References

    [1] Q. Shen, J.-Y. Guan, J.-G. Ren, T. Zeng, L. Hou, M. Li, Y. Cao, J.-J. Han, M.-Z. Lian, Y.-W. Chen, X.-X. Peng, S.-M. Wang, D.-Y. Zhu, X.-P. Shi, Z.-G. Wang, Y. Li, W.-Y. Liu, G.-S. Pan, Y. Wang, Z.-H. Li, J.-C. Wu, Y.-Y. Zhang, F.-X. Chen, C.-Y. Lu, S.-K. Liao, J. Yin, J.-J. Jia, C.-Z. Peng, H.-F. Jiang, Q. Zhang, J.-W. Pan. Free-space dissemination of time and frequency with 10−19 instability over 113  km. Nature, 610, 661-666(2022).

    [2] J.-D. Deschênes, L. C. Sinclair, F. R. Giorgetta, W. C. Swann, E. Baumann, H. Bergeron, M. Cermak, I. Coddington, N. R. Newbury. Synchronization of distant optical clocks at the femtosecond level. Phys. Rev. X, 6, 021016(2016).

    [3] M. Xin, K. Safak, F. X. Kärtner. Ultra-precise timing and synchronization for large-scale scientific instruments. Optica, 5, 1564-1578(2018).

    [4] Q. Shen, J.-Y. Guan, T. Zeng, Q.-M. Lu, L. Huang, Y. Cao, J.-P. Chen, T.-Q. Tao, J.-C. Wu, L. Hou, S.-K. Liao, J.-G. Ren, J. Yin, J.-J. Jia, H.-F. Jiang, C.-Z. Peng, Q. Zhang, J.-W. Pan. Experimental simulation of time and frequency transfer via an optical satellite–ground link at 10−19 instability. Optica, 8, 471-476(2021).

    [5] Y. Shen, S. Mazuelas, M. Z. Win. Network navigation: theory and interpretation. IEEE J. Sel. Areas Commun., 30, 1823-1834(2012).

    [6] J. Neil, L. Cosart, G. Zampetti. Precise timing for vehicle navigation in the smart city: an overview. IEEE Commun. Mag., 58, 54-59(2020).

    [7] B. Jaduszliwer, J. Camparo. Past, present and future of atomic clocks for GNSS. GPS Solutions, 25, 27(2021).

    [8] P. Zhang, R. Tu, X. Lu, Y. Gao, F. Lihong. Performance of global positioning system precise time and frequency transfer with integer ambiguity resolution. Meas. Sci. Technol., 33, 045005(2022).

    [9] Q. An. Review of methods and techniques of precise time interval measurements for particle physics experiments. Nucl. Tech., 29, 453-462(2006).

    [10] B. M. Roberts, G. Blewitt, C. Dailey, M. Murphy, M. Pospelov, A. Rollings, J. Sherman, W. Williams, A. Derevianko. Search for domain wall dark matter with atomic clocks on board global positioning system satellites. Nat. Commun., 8, 1195(2017).

    [11] N. Huntemann, B. Lipphardt, C. Tamm, V. Gerginov, S. Weyers, E. Peik. Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks. Phys. Rev. Lett., 113, 210802(2014).

    [12] A. Derevianko, M. Pospelov. Hunting for topological dark matter with atomic clocks. Nat. Phys., 10, 933-936(2014).

    [13] J. Liu, X. Chen, X. Ji. Current status of direct dark matter detection experiments. Nat. Phys., 13, 212-216(2017).

    [14] J. C. Berengut, V. V. Flambaum. Testing time-variation of fundamental constants using a 229th nuclear clock. Nuclear Phys. News, 20, 19-22(2010).

    [15] M. Safronova, D. Budker, D. DeMille, D. F. J. Kimball, A. Derevianko, C. W. Clark. Search for new physics with atoms and molecules. Rev. Mod. Phys., 90, 025008(2018).

    [16] Y. V. Stadnik, V. V. Flambaum. Searching for dark matter and variation of fundamental constants with laser and maser interferometry. Phys. Rev. Lett., 114, 161301(2015).

    [17] K. Józef. Review of methods for time interval measurements with picosecond resolution. Metrologia, 41, 17(2004).

    [18] I. P. Dan. Review of sub-nanosecond time-interval measurements. IEEE Trans. Nucl. Sci., 20, 36-51(1973).

    [19] J. Zhao, Z. Zhao, L. Fu. Research on the high resolution precision time-interval measurement methods. Proc. Eng., 174, 1257-1261(2017).

    [20] S. Henzler. Time-to-Digital Converter Basics(2010).

    [21] X. Ren, X. F. Zhang. Methods of high precision time-interval measurement. 4th International Conference on Electronic Information Technology and Computer Engineering (EITCE)(2020).

    [22] J. P. Jansson, A. Mantyniemi, J. Kostamovaara. A CMOS time-to-digital converter with better than 10 ps single-shot precision. IEEE J. Solid-State Circuits, 41, 1286-1296(2006).

    [23] D. W. Allan, H. Daams. Picosecond time difference measurement system. Symposium on Frequency Control(1975).

    [24] N. R. Newbury. Searching for applications with a fine-tooth comb. Nat. Photonics, 5, 186-188(2011).

    [25] J. L. Hall. Nobel lecture: defining and measuring optical frequencies. Rev. Mod. Phys., 78, 1279-1295(2006).

    [26] H. Margolis, G. Barwood, G. Huang, H. Klein, S. Lea, K. Szymaniec, P. Gill. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Science, 306, 1355-1358(2004).

    [27] S. A. Diddams, T. Udem, J. Bergquist, E. Curtis, R. Drullinger, L. Hollberg, W. M. Itano, W. Lee, C. Oates, K. Vogel. An optical clock based on a single trapped 199Hg+ ion. Science, 293, 825-828(2001).

    [28] H. Bergeron, L. C. Sinclair, W. C. Swann, I. Khader, K. C. Cossel, M. Cermak, J.-D. Deschênes, N. R. Newbury. Femtosecond time synchronization of optical clocks off of a flying quadcopter. Nat. Commun., 10, 1819(2019).

    [29] Q. Lu, Q. Shen, J. Guan, M. Li, J. Chen, S. Liao, Q. Zhang, C. Peng. Sensitive linear optical sampling system with femtosecond precision. Rev. Sci. Instrum., 91, 035113(2020).

    [30] E. D. Caldwell, L. C. Sinclair, N. R. Newbury, J.-D. Deschenes. The time-programmable frequency comb and its use in quantum-limited ranging. Nature, 610, 667-673(2022).

    [31] M. Kajima, K. Minoshima. A simple optical-zooming positioning system using a femtosecond frequency comb. Conference on Lasers & Electro-Optics(2009).

    [32] M. Kajima, K. Minoshima. Optical zooming interferometer for subnanometer positioning using an optical frequency comb. Appl. Opt., 49, 5844-5850(2010).

    [33] I. Coddington, W. C. Swann, L. Nenadovic, N. R. Newbury. Rapid and precise absolute distance measurements at long range. Nat. Photonics, 3, 351-356(2009).

    [34] G. Marra. Transfer of optical frequency combs over optical fibre links(2013).

    [35] W. Zhang, T. Li, M. Lours, S. Seidelin, G. Santarelli, Y. L. Coq. Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation. Appl. Phys. B, 106, 301-308(2012).

    [36] Z. Jin, Y. Xu, D. Yu, B. Luo, Z. Chen, G. Wu, H. Guo. Analyzing the influence of InGaAs photodetectors in comb-based frequency transfer. Frontiers in Optics + Laser Science(2022).

    [37] J. Kim, F. X. Kärtner, M. H. Perrott. Femtosecond synchronization of radio frequency signals with optical pulse trains. Opt. Lett., 29, 2076-2078(2004).

    [38] K. Jung, J. Kim. Subfemtosecond synchronization of microwave oscillators with mode-locked Er-fiber lasers. Opt. Lett., 37, 2958-2960(2012).

    [39] J. Kim, J. A. Cox, J. Chen, F. X. Kärtner. Drift-free femtosecond timing synchronization of remote optical and microwave sources. Nat. Photonics, 2, 733-736(2008).

    [40] F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, N. R. Newbury. Optical two-way time and frequency transfer over free space. Nat. Photonics, 7, 434-438(2013).

    [41] G. P. Agrawal. Nonlinear Fiber Optics(2000).

    Dongrui Yu, Ziyang Chen, Xuan Yang, Yunlong Xu, Ziyi Jin, Panxue Ma, Yufei Zhang, Song Yu, Bin Luo, Hong Guo. Time interval measurement with linear optical sampling at the femtosecond level[J]. Photonics Research, 2023, 11(12): 2222
    Download Citation