• Photonics Research
  • Vol. 9, Issue 1, 54 (2021)
Guoen Weng1、5、†,*, Jiyu Yan1、†, Shengjie Chen1、†, Chunhu Zhao1、†, Hanbing Zhang1, Jiao Tian1, Yuejun Liu1, Xiaobo Hu1, Jiahua Tao2, Shaoqiang Chen1、2、3、6、*, Ziqiang Zhu1, Hidefumi Akiyama4, and Junhao Chu1、2
Author Affiliations
  • 1Department of Electronic Engineering, East China Normal University, Shanghai 200241, China
  • 2Ministry of Education Nanophotonics & Advanced Instrument Engineering Research Center, East China Normal University, Shanghai 200241, China
  • 3Shanghai Institute of Intelligent Electronics & Systems, Fudan University, Shanghai 200433, China
  • 4Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581, Japan
  • 5e-mail: egweng@ee.ecnu.edu.cn
  • 6e-mail: sqchen@ee.ecnu.edu.cn
  • show less
    DOI: 10.1364/PRJ.409884 Cite this Article Set citation alerts
    Guoen Weng, Jiyu Yan, Shengjie Chen, Chunhu Zhao, Hanbing Zhang, Jiao Tian, Yuejun Liu, Xiaobo Hu, Jiahua Tao, Shaoqiang Chen, Ziqiang Zhu, Hidefumi Akiyama, Junhao Chu. Superior single-mode lasing in a self-assembly CsPbX3 microcavity over an ultrawide pumping wavelength range[J]. Photonics Research, 2021, 9(1): 54 Copy Citation Text show less
    References

    [1] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, C. M. Lieber. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 415, 617-620(2002).

    [2] X. Duan, Y. Huang, R. Agarwal, C. M. Lieber. Single-nanowire electrically driven lasers. Nature, 421, 241-245(2003).

    [3] R. Yan, D. Gargas, P. Yang. Nanowire photonics. Nat. Photonics, 3, 569-576(2009).

    [4] Y. Li, Y. Zhang, L. Zhang, A. W. Poon. Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives. Photon. Res., 3, B10-B27(2015).

    [5] E. Knill, R. Laflamme, G. J. Milburn. A scheme for efficient quantum computation with linear optics. Nature, 409, 46-52(2001).

    [6] W. W. Chow, F. Jahnke, C. Gies. Emission properties of nanolasers during the transition to lasing. Light Sci. Appl., 3, e201(2014).

    [7] R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, P. Yang. Nanowire-based single-cell endoscopy. Nat. Nanotechnol., 7, 191-196(2012).

    [8] K. Wang, G. Li, S. Wang, S. Liu, W. Sun, C. Huang, Y. Wang, Q. Song, S. Xiao. Dark-field sensors based on organometallic halide perovskite microlasers. Adv. Mater., 30, 1801481(2018).

    [9] Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, P. Yang. Tunable nanowire nonlinear optical probe. Nature, 447, 1098-1101(2007).

    [10] K. Wang, S. Wang, S. Xiao, N. Zhang, Y. J. Wang, W. Yang, Y. H. Wang, C. Zhang, W. Sun, Q. Song. Single-crystalline perovskite microlasers for high-contrast and sub-diffraction imaging. Adv. Funct. Mater., 29, 1904868(2019).

    [11] L. Pan, D. B. Bogy. Data storage: heat-assisted magnetic recording. Nat. Photonics, 3, 189-190(2009).

    [12] S. W. Eaton, A. Fu, A. B. Wong, C.-Z. Ning, P. Yang. Semiconductor nanowire lasers. Nat. Rev. Mater., 1, 16028(2016).

    [13] Q. Zhang, S. T. Ha, X. Liu, T. C. Sum, Q. Xiong. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett., 14, 5995-6001(2014).

    [14] H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M. V. Gustafsson, M. T. Trinh, S. Jin, X.-Y. Zhu. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater., 14, 636-642(2015).

    [15] B. R. Sutherland, S. Hoogland, M. M. Adachi, C. T. O. Wong, E. H. Sargent. Conformal organohalide perovskites enable lasing on spherical resonators. ACS Nano, 8, 10947-10952(2014).

    [16] F. Deschler, M. Price, S. Pathak, L. E. Klintberg, D.-D. Jarausch, R. Higler, S. Hüttner, T. Leijtens, S. D. Stranks, H. J. Snaith, M. Atatüre, R. T. Phillips, R. H. Friend. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett., 5, 1421-1426(2014).

    [17] J. Xing, X. F. Liu, Q. Zhang, S. T. Ha, Y. W. Yuan, C. Shen, T. C. Sum, Q. Xiong. Vapor phase synthesis of organometal halide perovskite nanowires for tunable room-temperature nanolasers. Nano Lett., 15, 4571-4577(2015).

    [18] P. Liu, X. He, J. Ren, Q. Liao, J. Yao, H. Fu. Organic-inorganic hybrid perovskite nanowire laser arrays. ACS Nano, 11, 5766-5773(2017).

    [19] S. W. Eaton, M. Lai, N. A. Gibson, A. B. Wong, L. Dou, J. Ma, L.-W. Wang, S. R. Leone, P. Yang. Lasing in robust cesium lead halide perovskite nanowires. Proc. Natl. Acad. Sci. USA, 113, 1993-1998(2016).

    [20] Y. Fu, H. Zhu, C. C. Stoumpos, Q. Ding, J. Wang, M. G. Kanatzidis, X. Zhu, S. Jin. Broad wavelength tunable robust lasing from single-crystal nanowires of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). ACS Nano, 10, 7963-7972(2016).

    [21] Q. Zhang, R. Su, X. Liu, J. Xing, T. C. Sum, Q. Xiong. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater., 26, 6238-6245(2016).

    [22] Y. Wang, X. Guan, D. Li, H.-C. Cheng, X. Duan, Z. Lin, X. Duan. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res., 10, 1223-1233(2017).

    [23] B. Tang, H. Dong, L. Sun, W. Zheng, Q. Wang, F. Sun, X. Jiang, A. Pan, L. Zhang. Single-mode lasers based on cesium lead halide perovskite submicron spheres. ACS Nano, 11, 10681-10688(2017).

    [24] H. Zhou, S. Yuan, X. Wang, T. Xu, X. Wang, H. Li, W. Zheng, P. Fan, Y. Li, L. Sun, A. Pan. Vapor growth and tunable lasing of band gap engineered cesium lead halide perovskite micro/nanorods with triangular cross section. ACS Nano, 11, 1189-1195(2017).

    [25] B. Zhou, H. Dong, M. Jiang, W. Zheng, L. Sun, B. Zhao, B. Tang, A. Pan, L. Zhang. Single-mode lasing and 3D confinement from perovskite micro-cubic cavity. J. Mater. Chem. C, 6, 11740-11748(2018).

    [26] X. X. Wang, H. Chen, H. Zhou, X. Wang, S. Yuan, Z. Yang, X. Zhu, R. Ma, A. Pan. Room-temperature high-performance CsPbBr3 perovskite tetrahedral microlasers. Nanoscale, 11, 2393-2400(2019).

    [27] H. Zhang, C. Zhao, S. J. Chen, J. Tian, J. Yan, G. Weng, X. Hu, J. Tao, Y. Pan, S. Q. Chen, H. Akiyama, J. Chu. Lasing operation in the CsPbBr3 perovskite micron hemisphere cavity grown by chemical vapor deposition. Chem. Eng. J., 389, 124395(2020).

    [28] H. He, E. Ma, X. Chen, D. Yang, B. Chen, G. Qian. Single crystal perovskite microplate for high-order multiphoton excitation. Small Methods, 3, 1900396(2019).

    [29] K. Wang, W. Sun, S. Wang, S. Liu, N. Zhang, S. Xiao, Q. Song. Single crystal microrod based homonuclear photonic molecule lasers. Adv. Opt. Mater., 5, 1600744(2017).

    [30] Q. Wei, X. Li, C. Liang, Z. Zhang, J. Guo, G. Hong, G. Xing, W. Huang. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater., 7, 1900080(2019).

    [31] Z. Liu, S. Huang, J. Du, C. Wang, Y. Leng. Advances in inorganic and hybrid perovskites for miniaturized lasers. Nanophotonics, 9, 2251-2272(2020).

    [32] G. Xing, N. Mathews, S. S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T. C. Sum. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater., 13, 476-480(2014).

    [33] S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. D. Luca, M. Fiebig, W. Heiss, M. V. Kovalenko. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites. Nat. Commun., 6, 8056(2015).

    [34] C. Qin, A. S. D. Sandanayaka, C. Zhao, T. Matsushima, D. Zhang, T. Fujihara, C. Adachi. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature, 585, 53-57(2020).

    [35] C. Huang, C. Zhang, S. Xiao, Y. Wang, Y. Fan, Y. Liu, N. Zhang, G. Qu, H. Ji, J. Han, L. Ge, Y. Kivshar, Q. Song. Ultrafast control of vortex microlasers. Science, 367, 1018-1021(2020).

    [36] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett., 15, 3692-3696(2015).

    [37] Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H. Sun. All-inorganic colloidal perovskite quantum dots: a new class of lasing materials with favorable characteristics. Adv. Mater., 27, 7101-7108(2015).

    [38] Y. Fu, H. Zhu, A. W. Schrader, D. Liang, Q. Ding, P. Joshi, L. Hwang, X.-Y. Zhu, S. Jin. Nanowire lasers of formamidinium lead halide perovskites and their stabilized alloys with improved stability. Nano Lett., 16, 1000-1008(2016).

    [39] X. X. Wang, H. Zhou, S. Yuan, W. Zheng, Y. Jiang, X. Zhuang, H. Liu, Q. Zhang, X. Zhu, X. Wang, A. Pan. Cesium lead halide perovskite triangular nanorods as high-gain medium and effective cavities for multiphoton-pumped lasing. Nano Res., 10, 3385-3395(2017).

    [40] Z. Liu, C. Wang, Z. Hu, J. Du, J. Yang, Z. Zhang, T. Shi, W. Liu, X. Tang, Y. Leng. Mode selection and high-quality upconversion lasing from perovskite CsPb2Br5 microplates. Photon. Res., 8, A31-A38(2020).

    [41] Z. Hu, Z. Liu, Y. Bian, D. Liu, X. Tang, W. Hu, Z. Zang, M. Zhou, L. Sun, J. Tang, Y. Li, J. Du, Y. Leng. Robust cesium lead halide perovskite microcubes for frequency upconversion lasing. Adv. Opt. Mater., 5, 1700419(2017).

    [42] B. Zhou, M. Jiang, H. Dong, W. Zheng, Y. Huang, J. Han, A. Pan, L. Zhang. High-temperature upconverted single-mode lasing in 3D fully inorganic perovskite microcubic cavity. ACS Photon., 6, 793-801(2019).

    [43] L. W. Casperson. Threshold characteristics of multimode laser oscillators. J. Appl. Phys., 46, 5194-5201(1975).

    [44] W. Zheng, X. Xiong, R. Lin, Z. Zhang, C. Xu, F. Huang. Balanced photodetection in one-step liquid-phase-synthesized CsPbBr3 micro-/nanoflake single crystals. ACS Appl. Mater. Interfaces, 10, 1865-1870(2018).

    [45] M. V. Kelso, N. K. Mahenderkar, Q. Chen, J. Z. Tubbesing, J. A. Switzer. Spin coating epitaxial films. Science, 364, 166-169(2019).

    [46] C. C. Stoumpos, C. D. Malliakas, M. G. Kanatzidis. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem., 52, 9019-9038(2013).

    [47] G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, H. J. Snaith. Inorganic caesium lead iodide perovskite solar cell. J. Mater. Chem. A, 3, 19688-19695(2015).

    [48] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science, 354, 92-95(2016).

    [49] B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, H.-G. Boyen. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater., 5, 1500477(2015).

    [50] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning. Highly oriented low-dimensional tin halide perovskites with enhanced stability and photovoltaic performance. J. Am. Chem. Soc., 139, 6693-6699(2017).

    [51] S. Masi, F. Aiello, A. Listorti, F. Balzano, D. Altamura, C. Giannini, R. Caliandro, G. U. Barretta, A. Rizzo, S. Colella. Connecting the solution chemistry of PbI2 and MAI: a cyclodextrin-based supramolecular approach to the formation of hybrid halide perovskites. Chem. Sci., 9, 3200-3208(2018).

    [52] D. Wei, H. Huang, P. Cui, J. Ji, S. Dou, E. Jia, S. Sajid, M. Cui, L. Chu, Y. Li, B. Jiang, M. Li. Moisture-tolerant supermolecule for the stability enhancement of organic-inorganic perovskite solar cells in ambient air. Nanoscale, 11, 1228-1235(2019).

    [53] Z. Liu, J. Yang, J. Du, Z. Hu, T. Shi, Z. Zhang, Y. Liu, X. Tang, Y. Leng, R. Li. Robust subwavelength single-mode perovskite nanocuboid laser. ACS Nano, 12, 5923-5931(2018).

    [54] S. Kreinberg, W. W. Chow, J. Wolters, C. Schneider, C. Gies, F. Jahnke, S. Höfling, M. Kamp, S. Reitzenstein. Emission from quantum-dot high-β microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling. Light Sci. Appl., 6, e17030(2017).

    [55] T.-C. Lu, J.-R. Chen, S.-W. Chen, H.-C. Kuo, C.-C. Kuo, C.-C. Lee, S.-C. Wang. Development of GaN-based vertical-cavity surface-emitting lasers. IEEE J. Sel. Top. Quantum Electron., 15, 850-860(2009).

    [56] G. Weng, S. Chen, Y. Mei, Y. Liu, H. Akiyama, X. Hu, J. Liu, B. Zhang, J. Chu. Multiwavelength GaN-based surface-emitting lasers and their design principles. Ann. Phys., 532, 1900308(2020).

    [57] Y. Mei, G. Weng, B. Zhang, J. Liu, W. Hofmann, L. Ying, J. Zhang, Z. Li, H. Yang, H.-C. Kuo. Quantum dot vertical-cavity surface-emitting lasers covering the ‘green gap’. Light Sci. Appl., 6, e16199(2017).

    [58] G. Weng, Y. Mei, J. Liu, W. Hofmann, L. Ying, J. Zhang, Y. Bu, Z. Li, H. Yang, B. Zhang. Low threshold continuous-wave lasing of yellow-green InGaN-QD vertical-cavity surface-emitting lasers. Opt. Express, 24, 15546-15553(2016).

    [59] Y. Higuchi, K. Omae, H. Matsumura, T. Mukai. Room-temperature CW lasing of a GaN-based vertical-cavity surface-emitting laser by current injection. Appl. Phys. Express, 1, 121102(2008).

    [60] L. N. Quan, B. P. Rand, R. H. Friend, S. G. Mhaisalkar, T.-W. Lee, E. H. Sargent. Perovskites for next-generation optical sources. Chem. Rev., 119, 7444-7477(2019).

    [61] M. A. Green, A. H. Baillie, H. J. Snaith. The emergence of perovskite solar cells. Nat. Photonics, 8, 506-514(2014).

    [62] S. J. J. Kwok, N. Martino, P. H. Dannenberg, S.-H. Yun. Multiplexed laser particles for spatially resolved single-cell analysis. Light Sci. Appl., 8, 74(2019).

    [63] Y. Peng, W. Lu, P. Ren, Y. Ni, Y. Wang, L. Zhang, Y. Zeng, W. Zhang, S. Ruan. Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF4:Yb/Tm hexagonal nanocrystals. Photon. Res., 6, 943-947(2018).

    [64] P. Zhang, W. Steelant, M. Kumar, M. Scholfield. Versatile photosensitizers for photodynamic therapy at infrared excitation. J. Am. Chem. Soc., 129, 4526-4527(2007).

    [65] J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-Y. Hu, H. Röckel, S. R. Marder, J. W. Perry. Two-photon absorption and broadband optical limiting with bis-donor stilbenes. Opt. Lett., 22, 1843-1845(1997).

    [66] W. Chen, S. Bhaumik, S. A. Veldhuis, G. Xing, Q. Xu, M. Grätzel, S. Mhaisalkar, N. Mathews, T. C. Sum. Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals. Nat. Commun., 8, 15198(2017).

    [67] A. Manzi, Y. Tong, J. Feucht, E.-P. Yao, L. Polavarapu, A. S. Urban, J. Feldmann. Resonantly enhanced multiple exciton generation through below-band-gap multi-photon absorption in perovskite nanocrystals. Nat. Commun., 9, 1518(2018).

    [68] J. H. Yu, S.-H. Kwon, Z. Petrášek, O. K. Park, S. W. Jun, K. Shin, M. Choi, Y. I. Park, K. Park, H. B. Na, N. Lee, D. W. Lee, J. H. Kim, P. Schwille, T. Hyeon. High-resolution three-photon biomedical imaging using doped ZnS nanocrystals. Nat. Mater., 12, 359-366(2013).

    [69] M. Saba, M. Cadelano, D. Marongiu, F. Chen, V. Sarritzu, N. Sestu, C. Figus, M. Aresti, R. Piras, A. G. Lehmann, C. Cannas, A. Musinu, F. Quochi, A. Mura, G. Bongiovanni. Correlated electron-hole plasma in organometal perovskites. Nat. Commun., 5, 5049(2014).

    [70] A. P. Schlaus, M. S. Spencer, K. Miyata, F. Liu, X. Wang, I. Datta, M. Lipson, A. Pan, X.-Y. Zhu. How lasing happens in CsPbBr3 perovskite nanowires. Nat. Commun., 10, 265(2019).

    [71] R. Röder, C. Ronning. Review on the dynamics of semiconductor nanowier lasers. Semicond. Sci. Technol., 33, 033001(2018).

    [72] J. Yang, X. Wen, H. Xia, R. Sheng, Q. Ma, J. Kim, P. Tapping, T. Harada, T. W. Kee, F. Huang, Y.-B. Cheng, M. Green, A. H. Baillie, S. Huang, S. Shrestha, R. Patterson, G. Conibeer. Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites. Nat. Commun., 8, 14120(2017).

    [73] T. Ito, H. Nakamae, Y. Hazama, T. Nakamura, S. Chen, M. Yoshita, C. Kim, Y. Kobayashi, H. Akiyama. Femtosecond pulse generation beyond photon lifetime limit in gain-switched semiconductor lasers. Commun. Phys., 1, 42(2018).

    [74] S. Chen, T. Ito, A. Asahara, M. Yoshita, W. Liu, J. Zhang, B. Zhang, T. Suemoto, H. Akiyama. Spectral dynamics of picosecond gain-switched pulses from nitride-based vertical-cavity surface-emitting lasers. Sci. Rep., 4, 4325(2014).

    [75] G. Weng, J. Xue, J. Tian, X. Hu, X. Bao, H. Lin, S. Chen, Z. Zhu, J. Chu. Picosecond random lasing based on three-photon absorption in organometallic halide CH3NH3PbBr3 perovskite thin films. ACS Photon., 5, 2951-2959(2018).

    [76] J. Tatebayashi, S. Kako, J. Ho, Y. Ota, S. Iwamoto, Y. Arakawa. Room-temperature lasing in a single nanowire with quantum dots. Nat. Photonics, 9, 501-505(2015).

    [77] J. C. Johnson, H. Yan, P. Yang, R. J. Saykally. Optical cavity effects in ZnO nanowire lasers and waveguides. J. Phys. Chem. B, 107, 8816-8828(2003).

    [78] A. P. Schlaus, M. S. Spencer, X.-Y. Zhu. Light-matter interaction and lasing in lead halide perovskites. Acc. Chem. Res., 52, 2950-2959(2019).

    [79] Q. Han, J. Wang, J. Lu, L. Sun, F. Lyu, H. Wang, Z. Chen, Z. Wang. Transition between exciton-polarition and coherent photonic lasing in all-inorganic perovskite microcuboid. ACS Photon., 7, 454-462(2020).

    [80] S. Mitsubori, I. Katayama, S. H. Lee, T. Yao, J. Takeda. Ultrafast lasing due to electron-hole plasma in ZnO nano-multipods. J. Phys. Condens. Matter, 21, 064211(2009).

    [81] J. Dai, C. X. Xu, P. Wu, J. Y. Guo, Z. H. Li, Z. L. Shi. Exciton and electron-hole plasma lasing in ZnO dodecagonal whispering-gallery-mode microcavities at room temperature. Appl. Phys. Lett., 97, 011101(2010).

    [82] J. Fallert, F. Stelzl, H. Zhou, A. Reiser, K. Thonke, R. Sauer, C. Klingshirn, H. Kalt. Lasing dynamics in single ZnO nanorods. Opt. Express, 16, 1125-1131(2008).

    [83] S. Peng, G. Xing, Z. Tang. Hot electron-hole plasma dynamics and amplified spontaneous emission in ZnTe nanowires. Nanoscale, 9, 15612-15621(2017).

    [84] M. He, Y. Jiang, Q. Liu, Z. Luo, C. Ouyang, X. X. Wang, W. Zheng, K. Braun, A. J. Meixner, T. Gao, X. Wang, A. Pan. Revealing excitonic and electron-hole plasma states in stimulated emission of single CsPbBr3 nanowires at room temperature. Phys. Rev. Appl., 13, 044072(2020).

    Guoen Weng, Jiyu Yan, Shengjie Chen, Chunhu Zhao, Hanbing Zhang, Jiao Tian, Yuejun Liu, Xiaobo Hu, Jiahua Tao, Shaoqiang Chen, Ziqiang Zhu, Hidefumi Akiyama, Junhao Chu. Superior single-mode lasing in a self-assembly CsPbX3 microcavity over an ultrawide pumping wavelength range[J]. Photonics Research, 2021, 9(1): 54
    Download Citation