• Photonics Research
  • Vol. 3, Issue 4, 192 (2015)
Rumao Tao, Long Huang, Pu Zhou*, Lei Si, and Zejin Liu
Author Affiliations
  • College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China
  • show less
    DOI: 10.1364/PRJ.3.000192 Cite this Article Set citation alerts
    Rumao Tao, Long Huang, Pu Zhou, Lei Si, Zejin Liu. Propagation of high-power fiber laser with high-order-mode content[J]. Photonics Research, 2015, 3(4): 192 Copy Citation Text show less
    References

    [1] X. Li, X. Ji, H. T. Eyyuboglu, Y. Baykal. Turbulence distance of radial Gaussian Schell-model array beams. Appl. Phys. B, 98, 557-565(2010).

    [2] B. Lü, B. Zhang. Propagation and focusing of laser beams with amplitude modulations and phase fluctuations. Opt. Commun., 135, 361-368(1997).

    [3] X. Chu, W. Wen. Quantitative description of the self-healing ability of a beam. Opt. Express, 22, 6899-6904(2014).

    [4] J. Xu, M. Tang, D. Zhao. Propagation of electromagnetic non-uniformly correlated beams in the oceanic turbulence. Opt. Commun., 331, 1-5(2014).

    [5] M. He, Z. Chen, J. Pu. Propagation properties and self-reconstruction of azimuthally polarized non-diffracting beams. Opt. Commun., 30, 916-922(2013).

    [6] G. Wu, H. Guo, S. Yu, B. Luo. Spreading and direction of Gaussian-Schell model beam through a non-Kolmogorov turbulence. Opt. Lett., 35, 715-717(2010).

    [7] J. Cang, X. Liu. Average capacity of free-space optical systems for a partially coherent beam propagating through non-Kolmogorov turbulence. Opt. Lett., 36, 3335-3337(2011).

    [8] H. Tang, B. Ou, B. Luo, H. Guo, A. Dang. Average spreading of a radial Gaussian beam array in non-Kolmogorov turbulence. J. Opt. Soc. Am. A, 28, 1016-1021(2011).

    [9] P. Zhou, Z. Liu, X. Xu, X. Chu. Propagation of phase-locked truncated Gaussian beam array in turbulent atmosphere. Chin. Phys. B, 19, 024205(2010).

    [10] W. Cheng, J. W. Haus, Q. Zhan. Propagation of vector vortex beams through a turbulent atmosphere. Opt. Express, 17, 17829-17836(2009).

    [11] C. Liang, C. Zhao, C. Zhao, K. Wang, Y. Cai. Degree of polarization of a tightly focused, partially coherent anomalous hollow beam. J. Opt. Soc. Am. A, 31, 2753-2758(2014).

    [12] E. Stiles. New developments in IPG fiber laser technology. Proceedings of the 5th International Workshop on Fiber Lasers(2009).

    [13] T. Eidam, C. Wirth, C. Jauregui, F. Stutzki, F. Jansen, H.-J. Otto, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann. Experimental observations of the threshold-like onset of mode instabilities in high power fiber amplifiers. Opt. Express, 19, 13218-13224(2011).

    [14] B. Ward, C. Robin, I. Dajani. Origin of thermal modal instabilities in large mode area fiber amplifiers. Opt. Express, 20, 11407-11422(2012).

    [15] M. M. Jørgensen, M. Laurila, D. Noordegraaf, T. T. Alkeskjoldb, J. Lægsgaard. Thermal-recovery of modal instability in rod fiber amplifiers. Proc. SPIE, 8601, 86010U(2013).

    [16] S. Wielandy. Implications of higher-order mode content in large mode area fibers with good beam quality. Opt. Express, 15, 15402-15409(2007).

    [17] H.-J. Otto, C. Jauregui, F. Stutzki. Controlling mode instabilities by dynamic mode excitation with an acousto-optic deflector. Opt. Express, 21, 17285-17298(2013).

    [18] A. V. Smith, J. J. Smith. Influence of pump and seed modulation on the mode instability thresholds of fiber amplifiers. Opt. Express, 20, 24545-24558(2012).

    [19] H. Yoda, P. Polynkin, M. Mansuripur. Beam quality factor of higher order modes in a step-index fiber. J. Lightwave Technol., 24, 1350-1355(2006).

    [20] A. W. Snyder, J. D. Love. Optical Waveguide Theory(1983).

    [21] M. Ferman. Single mode excitation of multimode fibers with ultrashort pulses. Opt. Lett., 23, 52-54(1998).

    [22] J. M. Fini. Bend-resistant design of conventional and microstructure fibers with very large mode area. Opt. Express, 14, 69-81(2006).

    [23] S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, F. V. Dimarcello. Light propagation with ultra-large modal areas in optical fibers. Opt. Lett., 31, 1797-1799(2006).

    [24] M. A. Vorontsov, T. Weyrauch, L. A. Beresnev, G. W. Carhart, L. Liu, K. Aschenbach. Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration. IEEE J. Sel. Top. Quantum Electron., 15, 269-280(2009).

    [25] H. Zhao, X. Wang, H. Ma, P. Zhou, Y. Ma, X. Xu, Y. Zhao. Adaptive conversion of a high-order mode beam into a near-diffraction-limited beam. Appl. Opt., 50, 4389-4392(2011).

    [26] J. W. Goodman. Introduction to Fourier Optics(1968).

    [27] J. A. Fleck, J. R. Morris, M. D. Feit. Time dependent propagation of high energy laser beam through the atmosphere. Appl. Phys., 11, 329-335(1977).

    [28] S. M. Flatte. Calculations of wave propagation through statistical random media, with and without a waveguide. Opt. Express, 10, 777-804(2002).

    [29] J. D. Schmidt. Numerical Simulation of Optical Wave Propagation(2010).

    [30] X. Xiao, D. Voelz. Wave optics simulation approach for partial spatially coherent beams. Opt. Express, 14, 6986-6992(2006).

    [31] R. Protz, J. Zoz, F. Geidek, S. Dietrich, M. Fall. High-power beam combining–a step to a future laser weapon system. Proc. SPIE, 8547, 854708(2012).

    [32] F. Stutzki, H.-J. Otto, F. Jansen, C. Gaida, C. Jauregui, J. Limpert, A. Tünnermann. High-speed modal decomposition of mode instabilities in high-power fiber lasers. Opt. Lett., 36, 4572-4574(2011).

    CLP Journals

    [1] Wentao Li, Danping Chen, Qinling Zhou, Lili Hu. Watt-level output rectangular-core neodymium-doped silicate glass fiber laser[J]. Chinese Optics Letters, 2016, 14(1): 011402

    [2] Xiao Chen, Liangjin Huang, Yi An, Huan Yang, Zhiping Yan, Yisha Chen, Xiaoming Xi, Zhiyong Pan, Pu Zhou. Spectrally U-shaped profile of beam propagation factor in all-solid photonic bandgap fiber[J]. Chinese Optics Letters, 2022, 20(1): 010602

    Rumao Tao, Long Huang, Pu Zhou, Lei Si, Zejin Liu. Propagation of high-power fiber laser with high-order-mode content[J]. Photonics Research, 2015, 3(4): 192
    Download Citation