• Acta Optica Sinica
  • Vol. 41, Issue 8, 0823008 (2021)
Linhai Xu1、3, Yufei Wang1、2、**, Yufei Jia1、3, and Wanhua Zheng1、2、3、4、*
Author Affiliations
  • 1Laboratory of Solid State Optoelectronics Information Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2College of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
  • 3Center of Materials Science and Opto-Electronic Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
  • 4State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • show less
    DOI: 10.3788/AOS202141.0823008 Cite this Article Set citation alerts
    Linhai Xu, Yufei Wang, Yufei Jia, Wanhua Zheng. Research Progress of Low-Coherence Laser[J]. Acta Optica Sinica, 2021, 41(8): 0823008 Copy Citation Text show less
    References

    [2] Chilla J, Shu Q Z, Zhou H L et al. Recent advances in optically pumped semiconductor lasers[J]. Proceedings of SPIE, 6451, 645109(2007). http://spie.org/x648.xml?product_id=705907

    [3] Zhao S Y, Qi A Y, Wang M J et al. High-power high-brightness 980 nm lasers with >50% wall-plug efficiency based on asymmetric super large optical cavity[J]. Optics Express, 26, 3518-3526(2018).

    [4] Goodman J W. Some fundamental properties of speckle[J]. Journal of the Optical Society of America, 66, 1145-1150(1976). http://www.opticsinfobase.org/josa/abstract.cfm?uri=josa-66-11-1145

    [5] Brown G M. Overview of three-dimensional shape measurement using optical methods[J]. Optical Engineering, 39, 10-22(2000). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=OPEGAR000039000001000010000001&idtype=cvips&gifs=Yes

    [6] Creath K. Phase-shifting speckle interferometry[J]. Applied Optics, 24, 3053-3058(1985).

    [7] Leendertz J A. Interferometric displacement measurement on scattering surfaces utilizing speckle effect[J]. Journal of Physics E: Scientific Instruments, 3, 214-218(1970).

    [8] Fercher A F, Briers J D. Flow visualization by means of single-exposure speckle photography[J]. Optics Communications, 37, 326-330(1981). http://www.sciencedirect.com/science/article/pii/0030401881904284

    [9] Chellappan K V, Erden E, Urey H. Laser-based displays: a review[J]. Applied Optics, 49, F79-F98(2010). http://www.ncbi.nlm.nih.gov/pubmed/20820205

    [10] Maycock J, Hennelly B M. McDonald J B, et al. Reduction of speckle in digital holography by discrete Fourier filtering[J]. Journal of the Optical Society of America A, 24, 1617-1622(2007).

    [11] Knitter S, Liu C G, Redding B et al. Coherence switching of a degenerate VECSEL for multimodality imaging[J]. Optica, 3, 403-406(2016).

    [12] Edwards C, Bhaduri B, Griffin B G et al. Epi-illumination diffraction phase microscopy with white light[J]. Optics Letters, 39, 6162-6165(2014).

    [13] Edwards C, Bhaduri B, Nguyen T et al. Effects of spatial coherence in diffraction phase microscopy[J]. Optics Express, 22, 5133-5146(2014). http://europepmc.org/abstract/med/24663853

    [14] Nguyen T H, Edwards C, Goddard L L et al. Quantitative phase imaging with partially coherent illumination[J]. Optics Letters, 39, 5511-5514(2014). http://europepmc.org/abstract/med/25360915

    [15] Zhang D L, Lan L, Bai Y R et al. Bond-selective transient phase imaging via sensing of the infrared photothermal effect[J]. Light, Science & Applications, 8, 116-127(2019). http://www.zhangqiaokeyan.com/academic-journal-foreign-pmc_light-science-applications_thesis/040006271194.html

    [16] Wolf E. Optics in terms of observable quantities[J]. Il Nuovo Cimento, 12, 884-888(1954). http://link.springer.com/article/10.1007/BF02781855

    [17] Wolf E. A macroscopic theory of interference and diffraction of light from finite sources II. fields with a spectral range of arbitrary width[J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 230, 246-265(1955). http://www.onacademic.com/detail/journal_1000036259524710_8c03.html

    [18] Roelandt S, Meuret Y, Jacobs A et al. Human speckle perception threshold for still images from a laser projection system[J]. Optics Express, 22, 23965-23979(2014). http://www.ncbi.nlm.nih.gov/pubmed/25321973

    [19] Goodman J W. Statistical properties of laser speckle patterns[M]. ∥Dainty J C. Laser speckle and related phenomena. Topics in applied physics. Berlin: Springer, 9, 9-75(1975).

    [20] Goodman J W. Speckle phenomena in optics: theory and applications[M]. New York: SPIE(2007).

    [21] Chriki R, Mahler S, Tradonsky C et al. Spatiotemporal supermodes: rapid reduction of spatial coherence in highly multimode lasers[J]. Physical Review A, 98, 023812(2018). http://journals.aps.org/pra/abstract/10.1103/PhysRevA.98.023812

    [22] Cao H, Chriki R, Bittner S et al. Complex lasers with controllable coherence[J]. Nature Reviews Physics, 1, 156-168(2019). http://www.nature.com/articles/s42254-018-0010-6

    [23] Cao H, Xu J Y, Zhang D Z et al. Spatial confinement of laser light in active random media[J]. Physical Review Letters, 84, 5584-5587(2000). http://prola.aps.org/abstract/PRL/v84/i24/p5584_1

    [24] Redding B, Choma M A, Cao H. Speckle-free laser imaging using random laser illumination[J]. Nature Photonics, 6, 355-359(2012). http://pubmedcentralcanada.ca/pmcc/articles/PMC3932313/

    [25] Cao H, Ling Y, Xu J Y et al. Lasing with resonant feedback in random media[J]. Physica B: Condensed Matter, 338, 215-218(2003).

    [26] Wiersma D S. The physics and applications of random lasers[J]. Nature Physics, 4, 359-367(2008). http://www.nature.com/articles/nphys971?error=cookies_not_supported&code=cb8045a0-1ebc-4b9c-ad0d-908bce015e71

    [27] Yu S F. Electrically pumped random lasers[J]. Journal of Physics D: Applied Physics, 48, 483001(2015).

    [28] Leong E S P, Yu S F. UV random lasing action In p-SiC(4H)/i-ZnO-SiO2 nanocomposite/n-ZnO: Al heterojunction diodes[J]. Advanced Materials, 18, 1685-1688(2006).

    [29] Turitsyn S K, Babin S A, Churkin D V et al. Random distributed feedback fibre lasers[J]. Physics Reports, 542, 133-193(2014).

    [30] Chang S W, Liao W C, Liao Y M et al. A white random laser[J]. Scientific Reports, 8, 2720-2729(2018).

    [31] Guo X J, Wang Y F, Jia Y F et al. Electrically-driven spectrally-broadened random lasing based on disordered photonic crystal structures[J]. Applied Physics Letters, 111, 031113(2017).

    [32] Nixon M, Redding B, Friesem A A et al. Efficient method for controlling the spatial coherence of a laser[J]. Optics Letters, 38, 3858-3861(2013). http://www.opticsinfobase.org/abstract.cfm?uri=ol-38-19-3858

    [33] Liew S F, Knitter S, Weiler S et al. Intracavity frequency-doubled degenerate laser[J]. Optics Letters, 42, 411-414(2017). http://europepmc.org/abstract/MED/28146489

    [34] Redding B, Cerjan A, Huang X et al. Low spatial coherence electrically pumped semiconductor laser for speckle-free full-field imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 112, 1304-1309(2015). http://www.ncbi.nlm.nih.gov/pubmed/25605946

    [35] Cerjan A, Bittner S, Constantin M et al. Multimode lasing in wave-chaotic semiconductor microlasers[J]. Physical Review A, 100, 063814(2019). http://arxiv.org/abs/1908.05397

    [36] Kim K, Bittner S, Zeng Y Q et al. Electrically pumped semiconductor laser with low spatial coherence and directional emission[J]. Applied Physics Letters, 115, 071101(2019). http://arxiv.org/abs/1905.03671

    [37] Xu L H, Xu L H, Wang Y F et al. Low-coherence, high-power, high-directional electrically driven dumbbell-shaped cavity semiconductor laser at 635 nm[J]. Optics Letters, 45, 5097-5100(2020).

    [38] Letokhov V. Generation of light by a scattering medium with negative resonance absorption[J]. Soviet Journal of Experimental and Theoretical Physics, 26, 835-840(1968).

    [39] Lawandy N M, Balachandran R M. Laser action in strongly scattering media[J]. Nature, 368, 436-440(1994). http://www.opticsinfobase.org/abstract.cfm?URI=IQEC-1994-QFE1

    [40] Cao H. Random lasers: development, features and applications[J]. Optics and Photonics News, 16, 24-29(2005). http://www.opticsinfobase.org/abstract.cfm?uri=opn-16-1-24

    [41] Wiersma D S, Cavalieri S. Light emission: a temperature-tunable random laser[J]. Nature, 414, 708-709(2001). http://www.nature.com/nature/journal/v414/n6865/abs/414708a.html

    [42] Schönhuber S, Brandstetter M, Hisch T et al. Random lasers for broadband directional emission[J]. Optica, 3, 1035-1038(2016). http://arxiv.org/abs/1605.09552v1

    [43] Wiersma D S. Clear directions for random lasers[J]. Nature, 539, 360-361(2016).

    [44] Arnaud J A. Degenerate optical cavities[J]. Applied Optics, 8, 189-196(1969).

    [45] Arnaud J A. Degenerate optical cavities. II: effect of misalignments[J]. Applied Optics, 8, 1909-1917(1969). http://www.ncbi.nlm.nih.gov/pubmed/20072544

    [46] Arnaud J A. Degenerate optical cavities. III: effect of aberrations[J]. Applied Optics, 9, 1192-1200(1970). http://www.opticsinfobase.org/abstract.cfm?id=16363

    [47] Jiang X F, Qavi A J, Huang S H et al. -04-30)[2020-11-15]. https:∥arxiv., org/abs/1805, 00062(2018).

    [48] He L N, Özdemir Ş K, Yang L. Whispering gallery microcavity lasers[J]. Laser & Photonics Reviews, 7, 60-82(2013).

    [49] Yang S C, Wang Y, Sun H D. Advances and prospects for whispering gallery mode microcavities[J]. Advanced Optical Materials, 3, 1136-1162(2015). http://onlinelibrary.wiley.com/doi/10.1002/adom.201500232

    [50] Hagness S C, Rafizadeh D, Ho S T et al. FDTD microcavity simulations: design and experimental realization of waveguide-coupled single-mode ring and whispering-gallery-mode disk resonators[J]. Journal of Lightwave Technology, 15, 2154-2165(1997). http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204155296.html

    [51] Redding B, Ge L, Solomon G S et al. Directional waveguide coupling from a wavelength-scale deformed microdisk[J]. Applied Physics Letters, 100, 061125(2012).

    [52] Nöckel J U, Douglas Stone A. Ray and wave chaos in asymmetric resonant optical cavities[J]. Nature, 385, 45-47(1997). http://www.nature.com/articles/385045a0

    [53] Xiao Y F, Zou C L, Li Y et al. Asymmetric resonant cavities and their applications in optics and photonics: a review[J]. Frontiers of Optoelectronics in China, 3, 109-124(2010).

    [54] Jiang X F, Zou C L, Wang L et al. Whispering-gallery microcavities with unidirectional laser emission[J]. Laser & Photonics Reviews, 10, 40-61(2016). http://onlinelibrary.wiley.com/doi/epdf/10.1002/lpor.201500163

    [55] Cao H, Wiersig J. Dielectric microcavities: model systems for wave chaos and non-Hermitian physics[J]. Reviews of Modern Physics, 87, 61-111(2015). http://adsabs.harvard.edu/abs/2015RvMP...87...61C

    [56] Wang Q J, Yan C, Yu N et al. Whispering-gallery mode resonators for highly unidirectional laser action[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 22407-22412(2010). http://europepmc.org/articles/PMC3012530/

    [57] Yan C L, Wang Q J, Diehl L et al. Directional emission and universal far-field behavior from semiconductor lasers with Limaçon-shaped microcavity[J]. Applied Physics Letters, 94, 251101(2009). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5128647

    [58] Wiersig J, Hentschel M. Unidirectional light emission from high-Q modes in optical microcavities[J]. Physical Review A, 73, 031802(2006). http://arxiv.org/abs/cond-mat/0512435

    [59] Song Q H, Ge L, Redding B et al. Channeling chaotic rays into waveguides for efficient collection of microcavity emission[J]. Physical Review Letters, 108, 243902(2012). http://www.ncbi.nlm.nih.gov/pubmed/23004273

    [60] Lee S B, Yang J, Moon S et al. Universal output directionality of single modes in a deformed microcavity[J]. Physical Review A, 75, 011802(2007). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=PLRAAN000075000001011802000001&idtype=cvips&gifs=Yes

    [61] Harayama T, Shinohara S. Two-dimensional microcavity lasers[J]. Laser & Photonics Reviews, 5, 247-271(2011).

    [62] Bunimovich L A. On the ergodic properties of nowhere dispersing billiards[J]. Communications in Mathematical Physics, 65, 295-312(1979). http://link.springer.com/article/10.1007/BF01197884

    [63] Ree S, Reichl L E. Classical and quantum chaos in a circular billiard with a straight cut[J]. Physical Review E, 60, 1607-1615(1999). http://www.ncbi.nlm.nih.gov/pubmed/11969923/

    [64] Ge L, Chong Y D, Stone A D. Steady-state Ab initio laser theory: generalizations and analytic results[J]. Physical Review A, 82, 063824(2010). http://www.oalib.com/paper/3313585

    [65] Türeci H E, Ge L, Rotter S et al. Strong interactions in multimode random lasers[J]. Science, 320, 643-646(2008).

    [66] Kogelnik H, Li T. Laser beams and resonators[J]. Applied Optics, 5, 1550-1567(1966).

    [67] Biellak S A, Sun Y, Wong S S et al. Lateral mode behavior of reactive-ion-etched stable-resonator semiconductor lasers[J]. Journal of Applied Physics, 78, 4294-4296(1995).

    [68] Fukushima T, Harayama T, Miyasaka T et al. Morphological dependence of lasing modes in two-dimensional quasi-stadium laser diodes[J]. Journal of the Optical Society of America B, 21, 935-943(2004). http://www.opticsinfobase.org/abstract.cfm?uri=josab-21-5-935

    [69] Fukushima T, Biellak S A, Sun Y et al. Lasing characteristics of a quasi-stadium laser diode[C]∥Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 18-23, 1997, Baltimore, MD, USA., 227-228(1997).

    [70] Fukushima T, Biellak S, Sun Y et al. Beam propagation behavior in a quasi-stadium laser diode[J]. Optics Express, 2, 21-28(1998).

    [71] Fukushima T. Analysis of resonator eigenmodes in symmetric quasi-stadium laser diodes[J]. Journal of Lightwave Technology, 18, 2208-2216(2000). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-18-12-2208

    [72] Yao Q F, Huang Y Z, Yang Y D et al. Analysis of mode characteristics for microcircular resonators confined by different metallic materials[J]. Journal of Semiconductors, 37, 124004(2016).

    [73] Yao Q F, Huang Y Z, Lin J D et al. High-Q modes in defected microcircular resonator confined by metal layer for unidirectional emission[J]. Optics Express, 21, 2165-2170(2013).

    Linhai Xu, Yufei Wang, Yufei Jia, Wanhua Zheng. Research Progress of Low-Coherence Laser[J]. Acta Optica Sinica, 2021, 41(8): 0823008
    Download Citation