• Laser & Optoelectronics Progress
  • Vol. 58, Issue 22, 2210014 (2021)
Hongbo Jia, Yunyu Shi*, Xiang Liu**, and Jingwen Zhao
Author Affiliations
  • School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
  • show less
    DOI: 10.3788/LOP202158.2210014 Cite this Article Set citation alerts
    Hongbo Jia, Yunyu Shi, Xiang Liu, Jingwen Zhao. Low Illumination Image Enhancement Algorithm Based on Light Remapping[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210014 Copy Citation Text show less
    References

    [1] Li L F, Sun R Y. Bridge crack detection algorithm based on image processing under complex background[J]. Laser & Optoelectronics Progress, 56, 061002(2019).

    [2] Land E H. The retinex theory of color vision[J]. Scientific American, 237, 108-128(1977).

    [3] Jobson D J, Rahman Z, Woodell G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 6, 451-462(1997).

    [4] Jobson D J, Rahman Z, Woodell G A. A multiscale retinex for bridging the gap between color images and the human observation of scenes[J]. IEEE Transactions on Image Processing, 6, 965-976(1997).

    [5] Wang S H, Zheng J, Hu H M et al. Naturalness preserved enhancement algorithm for non-uniform illumination images[J]. IEEE Transactions on Image Processing, 22, 3538-3548(2013).

    [6] Guo X J, Li Y, Ling H B. LIME: low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 26, 982-993(2017).

    [7] Tian H J, Cai M P, Guan T et al. Low-light image enhancement method using Retinex method based on YCbCr color space[J]. Acta Photonica Sinica, 49, 0210002(2020).

    [8] Liu J, Guo X, Xu X L et al. Low illumination image enhancement technique based on Retinex theory[J]. Fire Control & Command Control, 44, 139-143(2019).

    [9] Lore K G, Akintayo A, Sarkar S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 61, 650-662(2017).

    [10] Wei C, Wang W J, Yang W H et al. Deep Retinex decomposition for low-light enhancement[EB/OL]. (2018-08-14)[2020-12-15]. https://arxiv.org/abs/1808.04560v1

    [11] Ren W Q, Liu S F, Ma L et al. Low-light image enhancement via a deep hybrid network[J]. IEEE Transactions on Image Processing, 28, 4364-4375(2019).

    [12] Guo C L, Li C Y, Guo J C et al. Zero-reference deep curve estimation for low-light image enhancement[C]. //2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 13-19, 2020, Seattle, WA, USA., 1777-1786(2020).

    [13] Wu R Y, Wang D X, Yuan H C. Low-light image enhancement based on attention mechanism and convolutional neural networks[J]. Laser & Optoelectronics Progress, 57, 201002(2020).

    [14] Ying Z Q, Li G, Ren Y R et al. A new low-light image enhancement algorithm using camera response model[C]. //2017 IEEE International Conference on Computer Vision Workshops (ICCVW), October 22-29, 2017, Venice, Italy., 3015-3022(2017).

    [15] Ma K D, Zeng K, Wang Z. Perceptual quality assessment for multi-exposure image fusion[J]. IEEE Transactions on Image Processing, 24, 3345-3356(2015).

    [17] Lee C, Lee C, Kim C S. Contrast enhancement based on layered difference representation of 2D histograms[J]. IEEE Transactions on Image Processing, 22, 5372-5384(2013).

    [18] Mittal A, Soundararajan R, Bovik A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 20, 209-212(2013).

    Hongbo Jia, Yunyu Shi, Xiang Liu, Jingwen Zhao. Low Illumination Image Enhancement Algorithm Based on Light Remapping[J]. Laser & Optoelectronics Progress, 2021, 58(22): 2210014
    Download Citation