• Photonics Research
  • Vol. 6, Issue 5, 390 (2018)
Hongbo Lu1,2, Jian Xing1, Cheng Wei1, Jiangying Xia3..., Junqing Sha1, Yunsheng Ding2, Guobing Zhang1,2, Kang Xie3, Longzhen Qiu1,2 and Zhijia Hu1,3,4,*|Show fewer author(s)
Author Affiliations
  • 1Key Laboratory of Special Display Technology, Ministry of Education, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
  • 2Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
  • 3School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
  • 4Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
  • show less
    DOI: 10.1364/PRJ.6.000390 Cite this Article Set citation alerts
    Hongbo Lu, Jian Xing, Cheng Wei, Jiangying Xia, Junqing Sha, Yunsheng Ding, Guobing Zhang, Kang Xie, Longzhen Qiu, Zhijia Hu, "Band-gap-tailored random laser," Photonics Res. 6, 390 (2018) Copy Citation Text show less
    References

    [1] S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, L. Xu. Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides. IEEE J. Quantum. Electron., 43, 407-410(2007).

    [2] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [3] J. H. Lin, Y. L. Hsiao. Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes. Opt. Mater. Express, 4, 1555-1563(2014).

    [4] M. Leonetti, C. Conti, C. López. Tunable degree of localization in random lasers with controlled interaction. Appl. Phys. Lett., 101, 051104(2012).

    [5] S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, C. López. Resonance-driven random lasing. Nat. Photonics, 2, 429-432(2008).

    [6] R. G. S. EI-Dardiry, A. Lagendijk. Tuning random lasers by engineered absorption. Appl. Phys. Lett., 98, 161106(2011).

    [7] L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, C. R. Lee. Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals. Adv. Opt. Mater., 1, 637-643(2013).

    [8] L. Ye, Y. Wang, Y. Feng, C. Zhao, G. Hu. Study of low-threshold and high-intensity random lasing in dye doped liquid crystals. J. Laser Appl., 28, 022005(2016).

    [9] F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, Z. Lv. Polarization and polarization control of random lasers from dye-doped nematic liquid crystals. Opt. Lett., 38, 1557-1559(2013).

    [10] L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, Y. Lu. Study on the polarization of random lasers from dye-doped nematic liquid crystals. Nanoscale Res. Lett., 12, 27(2017).

    [11] B. He, Q. Liao, Y. Huang. Random lasing in a dye doped cholesteric liquid crystal polymer solution. Opt. Mater., 31, 375-379(2008).

    [12] C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, T. H. Lin. Random lasing in blue phase liquid crystals. Opt. Express, 20, 23978-23984(2012).

    [13] L. Li, L. Deng. Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells. Laser Phys., 23, 085001(2013).

    [14] S. Gottardo, S. Cavalieri, O. Yaroshchuk, D. S. Wiersma. Quasi-two-dimensional diffusive random laser action. Phys. Rev. Lett., 93, 263901(2004).

    [15] K. Funamoto, M. Ozaki, K. Yoshino. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn. J. Appl. Phys., 42, L1523-L1525(2003).

    [16] S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles. Enhanced emission from liquid-crystal lasers. J. Appl. Phys., 97, 023103(2005).

    [17] Y. Huang, Y. Zhou, C. Doyle, S. T. Wu. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express, 14, 1236-1242(2006).

    [18] S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl. Phys. Lett., 82, 16-18(2003).

    [19] M. Kasano, M. Ozaki, K. Yoshino, W. Haase. Electrically tunable waveguide laser based on ferroelectric liquid crystal. Appl. Phys. Lett., 82, 4026-4028(2003).

    [20] B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, S. O. Kang. Electrically controllable omnidirectional laser emission from a helical-polymer network composite film. Adv. Mater., 21, 771-775(2009).

    [21] G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol. Phototunable lasing in dye-doped cholesteric liquid crystals. Appl. Phys. Lett., 83, 5353-5355(2003).

    [22] P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky. Light controllable tuning and switching of lasing in chiral liquid crystals. Opt. Express, 13, 2358-2363(2005).

    [23] Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, M. Ozaki. Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network. Adv. Mater., 23, 5498-5501(2011).

    [24] S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, H. J. Coles. Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals. Appl. Phys. Lett., 100, 071110(2012).

    [25] T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, P. C. Yang. Cholesteric liquid crystal laser with wide tuning capability. Appl. Phys. Lett., 86, 161120(2005).

    [26] L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, Q. Li. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater., 27, 2065-2069(2015).

    [27] S. Y. T. Tzeng, C. N. Chen, Y. Tzeng. Thermal tuning band gap in cholesteric liquid crystals. Liq. Cryst., 37, 1221-1224(2010).

    [28] G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, L. Qiu. A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. Chem. Commun., 50, 3180-3183(2014).

    [29] C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, H. J. Coles. Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium. J. Appl. Phys., 107, 043101(2010).

    [30] Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, D. Shen. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion. J. Mater. Chem. C, 3, 2462-2470(2015).

    [31] V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett., 23, 1707-1709(1998).

    CLP Journals

    [1] Shaohua Gao, Jiayi Wang, Wenhua Li, Xuanyi Yu, Xinzheng Zhang, Xiao Song, Andrey Iljin, Irena Drevensek-Olenik, Romano A. Rupp, Jingjun Xu, "Low threshold random lasing in dye-doped and strongly disordered chiral liquid crystals," Photonics Res. 8, 642 (2020)

    Hongbo Lu, Jian Xing, Cheng Wei, Jiangying Xia, Junqing Sha, Yunsheng Ding, Guobing Zhang, Kang Xie, Longzhen Qiu, Zhijia Hu, "Band-gap-tailored random laser," Photonics Res. 6, 390 (2018)
    Download Citation