• Photonics Research
  • Vol. 6, Issue 5, 390 (2018)
Hongbo Lu1、2, Jian Xing1, Cheng Wei1, Jiangying Xia3, Junqing Sha1, Yunsheng Ding2, Guobing Zhang1、2, Kang Xie3, Longzhen Qiu1、2, and Zhijia Hu1、3、4、*
Author Affiliations
  • 1Key Laboratory of Special Display Technology, Ministry of Education, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
  • 2Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
  • 3School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
  • 4Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
  • show less
    DOI: 10.1364/PRJ.6.000390 Cite this Article Set citation alerts
    Hongbo Lu, Jian Xing, Cheng Wei, Jiangying Xia, Junqing Sha, Yunsheng Ding, Guobing Zhang, Kang Xie, Longzhen Qiu, Zhijia Hu. Band-gap-tailored random laser[J]. Photonics Research, 2018, 6(5): 390 Copy Citation Text show less
    References

    [1] S. Xiao, Q. Song, F. Wang, L. Liu, J. Liu, L. Xu. Switchable random laser from dye-doped polymer dispersed liquid crystal waveguides. IEEE J. Quantum. Electron., 43, 407-410(2007).

    [2] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309-2311(2007).

    [3] J. H. Lin, Y. L. Hsiao. Manipulation of the resonance characteristics of random lasers from dye-doped polymer dispersed liquid crystals in capillary tubes. Opt. Mater. Express, 4, 1555-1563(2014).

    [4] M. Leonetti, C. Conti, C. López. Tunable degree of localization in random lasers with controlled interaction. Appl. Phys. Lett., 101, 051104(2012).

    [5] S. Gottardo, R. Sapienza, P. D. García, A. Blanco, D. S. Wiersma, C. López. Resonance-driven random lasing. Nat. Photonics, 2, 429-432(2008).

    [6] R. G. S. EI-Dardiry, A. Lagendijk. Tuning random lasers by engineered absorption. Appl. Phys. Lett., 98, 161106(2011).

    [7] L. J. Chen, J. D. Lin, S. Y. Huang, T. S. Mo, C. R. Lee. Thermally and electrically tunable lasing emission and amplified spontaneous emission in a composite of inorganic quantum dot nanocrystals and organic cholesteric liquid crystals. Adv. Opt. Mater., 1, 637-643(2013).

    [8] L. Ye, Y. Wang, Y. Feng, C. Zhao, G. Hu. Study of low-threshold and high-intensity random lasing in dye doped liquid crystals. J. Laser Appl., 28, 022005(2016).

    [9] F. Yao, W. Zhou, H. Bian, Y. Zhang, Y. Pei, X. Sun, Z. Lv. Polarization and polarization control of random lasers from dye-doped nematic liquid crystals. Opt. Lett., 38, 1557-1559(2013).

    [10] L. Ye, C. Zhao, Y. Feng, B. Gu, Y. Cui, Y. Lu. Study on the polarization of random lasers from dye-doped nematic liquid crystals. Nanoscale Res. Lett., 12, 27(2017).

    [11] B. He, Q. Liao, Y. Huang. Random lasing in a dye doped cholesteric liquid crystal polymer solution. Opt. Mater., 31, 375-379(2008).

    [12] C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, T. H. Lin. Random lasing in blue phase liquid crystals. Opt. Express, 20, 23978-23984(2012).

    [13] L. Li, L. Deng. Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells. Laser Phys., 23, 085001(2013).

    [14] S. Gottardo, S. Cavalieri, O. Yaroshchuk, D. S. Wiersma. Quasi-two-dimensional diffusive random laser action. Phys. Rev. Lett., 93, 263901(2004).

    [15] K. Funamoto, M. Ozaki, K. Yoshino. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn. J. Appl. Phys., 42, L1523-L1525(2003).

    [16] S. M. Morris, A. D. Ford, M. N. Pivnenko, H. J. Coles. Enhanced emission from liquid-crystal lasers. J. Appl. Phys., 97, 023103(2005).

    [17] Y. Huang, Y. Zhou, C. Doyle, S. T. Wu. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express, 14, 1236-1242(2006).

    [18] S. Furumi, S. Yokoyama, A. Otomo, S. Mashiko. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl. Phys. Lett., 82, 16-18(2003).

    [19] M. Kasano, M. Ozaki, K. Yoshino, W. Haase. Electrically tunable waveguide laser based on ferroelectric liquid crystal. Appl. Phys. Lett., 82, 4026-4028(2003).

    [20] B. Park, M. Kim, S. W. Kim, W. Jang, H. Takezoe, Y. Kim, E. H. Choi, Y. H. Seo, G. S. Cho, S. O. Kang. Electrically controllable omnidirectional laser emission from a helical-polymer network composite film. Adv. Mater., 21, 771-775(2009).

    [21] G. Chanishvili, G. Chilaya, R. Petriashvili, R. Barberi, R. Bartolino, G. Cipparrone, A. Mazzulla, L. Oriol. Phototunable lasing in dye-doped cholesteric liquid crystals. Appl. Phys. Lett., 83, 5353-5355(2003).

    [22] P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, A. Bobrovsky. Light controllable tuning and switching of lasing in chiral liquid crystals. Opt. Express, 13, 2358-2363(2005).

    [23] Y. Inoue, H. Yoshida, K. Inoue, Y. Shiozaki, H. Kubo, A. Fujii, M. Ozaki. Tunable lasing from a cholesteric liquid crystal film embedded with a liquid crystal nanopore network. Adv. Mater., 23, 5498-5501(2011).

    [24] S. M. Morris, D. J. Gardiner, P. J. W. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, H. J. Coles. Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals. Appl. Phys. Lett., 100, 071110(2012).

    [25] T. H. Lin, Y. J. Chen, C. H. Wu, Y. G. Fuh, J. H. Liu, P. C. Yang. Cholesteric liquid crystal laser with wide tuning capability. Appl. Phys. Lett., 86, 161120(2005).

    [26] L. Wang, H. Dong, Y. Li, R. Liu, Y. F. Wang, H. K. Bisoyi, L. D. Sun, C. H. Yan, Q. Li. Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer. Adv. Mater., 27, 2065-2069(2015).

    [27] S. Y. T. Tzeng, C. N. Chen, Y. Tzeng. Thermal tuning band gap in cholesteric liquid crystals. Liq. Cryst., 37, 1221-1224(2010).

    [28] G. Zhang, P. Li, L. Tang, J. Ma, X. Wang, H. Lu, B. Kang, K. Cho, L. Qiu. A bis(2-oxoindolin-3-ylidene)-benzodifuran-dione containing copolymer for high-mobility ambipolar transistors. Chem. Commun., 50, 3180-3183(2014).

    [29] C. Mowatt, S. M. Morris, M. H. Song, T. D. Wilkinson, R. H. Friend, H. J. Coles. Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium. J. Appl. Phys., 107, 043101(2010).

    [30] Z. G. Zheng, B. W. Liu, L. Zhou, W. Wang, W. Hu, D. Shen. Wide tunable lasing in photoresponsive chiral liquid crystal emulsion. J. Mater. Chem. C, 3, 2462-2470(2015).

    [31] V. I. Kopp, B. Fan, H. K. M. Vithana, A. Z. Genack. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett., 23, 1707-1709(1998).

    CLP Journals

    [1] Shaohua Gao, Jiayi Wang, Wenhua Li, Xuanyi Yu, Xinzheng Zhang, Xiao Song, Andrey Iljin, Irena Drevensek-Olenik, Romano A. Rupp, Jingjun Xu. Low threshold random lasing in dye-doped and strongly disordered chiral liquid crystals[J]. Photonics Research, 2020, 8(5): 642

    Hongbo Lu, Jian Xing, Cheng Wei, Jiangying Xia, Junqing Sha, Yunsheng Ding, Guobing Zhang, Kang Xie, Longzhen Qiu, Zhijia Hu. Band-gap-tailored random laser[J]. Photonics Research, 2018, 6(5): 390
    Download Citation